

FCC DoC TEST REPORT

for

AC Adapter

MODEL: KTPS36-0940DT 3P; KTPS40-1233DT 3P; KTPS45-0950DT 3P; KTPS50-1242DT 3P; KTPS50-1533DT 3P; KTPS50-1827DT 3P; KTPS50-1926DT 3P; KTPS-50-2025DT 3P; KTPS50-2421DT 3P; KTPS50-4810DT 3P

Test Report Number: T110909102-D

Issued to:

KAGA ELECTRONICS (USA) INC. SUITE 100 2480 N FIRST ST., SAN JOSE, CA, 95131-1030, USA

Issued by:

Compliance Certification Services Inc.

Sindian Lab.

No.163-1, Jhongsheng Rd, Sindian City, Taipei County 23151, Taiwan (R.O.C.) TEL: 886-2-22170894

FAX: 886-2-22171029

Issued Date: September 19, 2011

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, A2LA, NVLAP, NIST or any government agencies. The test results in the report only apply to the tested sample.

Revision History

	Issue		Effect	
Rev.	Date	Revisions	Page	Revised By
00	November 26, 2007	Initial Issue	ALL	Wendy Wang
01	September 19, 2011	Copy Report	ALL	Wendy Wang

TABLE OF CONTENTS

1	TEST RESULT CERTIFICATION	4
2	EUT DESCRIPTION	5
3	TEST METHODOLOGY	6
3.1.	DECISION OF FINAL TEST MODE	6
3.2.	EUT SYSTEM OPERATION	6
4	SETUP OF EQUIPMENT UNDER TEST	7
4.1.	DESCRIPTION OF SUPPORT UNITS	7
4.2.	CONFIGURATION OF SYSTEM UNDER TEST	7
5	FACILITIES AND ACCREDITATIONS	8
5.1.	FACILITIES	
5.2.	ACCREDITATIONS	
5.3.	MEASUREMENT UNCERTAINTY	
6	CONDUCTED EMISSION MEASUREMENT	9
6.1.	LIMITS OF CONDUCTED EMISSION MEASUREMENT	9
6.2.	TEST INSTRUMENTS	9
6.3.	TEST PROCEDURES	.10
6.4.	TEST SETUP	.11
6.5.	DATA SAMPLE	.11
6.6.	TEST RESULTS	
7	RADIATED EMISSION MEASUREMENT	.13
7.1.	LIMITS OF RADIATED EMISSION MEASUREMENT	.13
7.2.	TEST INSTRUMENTS	.14
7.3.	TEST PROCEDURES	.15
7.4.	TEST SETUP	.16
7.5.	DATA SAMPLE	.17
7.6.	TEST RESULTS	
8	PHOTOGRAPHS OF THE TEST CONFIGURATION	.21

1 TEST RESULT CERTIFICATION

Product:	AC Adapter
Model:	KTPS36-0940DT 3P; KTPS40-1233DT 3P; KTPS45-0950DT 3P; KTPS50-1242DT 3P; KTPS50-1533DT 3P; KTPS50-1827DT 3P; KTPS50-1926DT 3P; KTPS-50-2025DT 3P; KTPS50-2421DT 3P; KTPS50-4810DT 3P
Brand:	Volgen
Applicant:	KAGA ELECTRONICS (USA) INC. SUITE 100 2480 N FIRST ST., SAN JOSE, CA, 95131-1030, USA
Manufacturer:	Boayang Electronics Co., Ltd. Di Feng Gong Ye Qu 2 Hao , Xiasha Liuwu Village, Shipai Town Dong Guan City, Guang Dong Province, China
Tested:	March 12, 2007 ~ March 15, 2007

EMISSION				
Standard	Item	Result	Remarks	
FCC 47 CFR Part 15 Subpart B, ICES-003 Issue 4	Conducted (Main Port)	PASS	Meet Class B limit	
	Radiated	PASS	Meet Class B limit	

Note: 1. The test result judgment is decided by the limit of measurement standard.
2. The information of measurement uncertainty is available upon the customer's request.

Deviation from Applicable Standard
None

The above equipment has been tested by Compliance Certification Services Inc., and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

Sam Hu Section Manager

Reviewed by:

HSV

Vesta Hsu Supervisor of report document dept.

2 EUT DESCRIPTION

Product	AC Adapter		
Brand Name	ADAPTER TECH		
Model	KTPS36-0940DT 3P; KTPS40-1233DT 3P; KTPS45-0950DT 3P; KTPS50-1242DT 3P; KTPS50-1533DT 3P; KTPS50-1827DT 3P; KTPS50-1926DT 3P; KTPS-50-2025DT 3P; KTPS50-2421DT 3P; KTPS50-4810DT 3P		
ApplicantKAGA ELECTRONICS (USA) INC.			
Housing material	Plastic		
Serial Number	N/A		
Housing material	Plastic		
Serial Number	N/A		
Received Date	December 7, 2007		
AC Power During Test	120VAC/60Hz		
DC Power Cable Type Unshielded, 1.8m (Non-detachable, with a core)			

Model Difference

Model		Difference	Power Difference	Tested (Checked)
Original	KTPS36-0940DT 3P		9V/4.0A	\square
	KTPS40-1233DT 3P		12V/3.3A	
	KTPS45-0950DT 3P		9V/5.0A	
	KTPS50-1242DT 3P	100 240140	12V/4.2A	
	KTPS50-1533DT 3P	100-240VAC ~ - 47-63Hz - 1.1A MAX -	15V/3.3A	
Additional	KTPS50-1827DT 3P		18V/2.7A	\square
	KTPS50-1926DT 3P		19V/2.6A	
	KTPS50-2025DT 3P		20V/2.5A	
	KTPS50-2421DT 3P		24V/2.1A	
	KTPS50-4810DT 3P]	48V/1.0A	\square

I/O PORT

I/O PORT TYPES	Q'TY	TESTED WITH

Note: None.

3 TEST METHODOLOGY

3.1. DECISION OF FINAL TEST MODE

The EUT was tested together with the above additional components, and a configuration, which produced the worst emission levels, was selected and recorded in this report.

The test configuration/ modes are as the following:

Mode(s):

1	KTPS36-0940DT 3P	Full Rating Load Mode
2	KTPS50-1827DT 3P	Full Rating Load Mode
3	KTPS50-4810DT 3P	Full Rating Load Mode
4	K11550-4010D1 51	Half Rating Load Mode

Conduction: Mode 4 Radiation: Mode 3

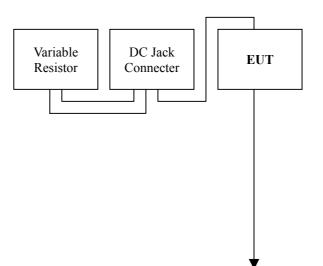
3.2. EUT SYSTEM OPERATION

1. To adjust variable resistor to test full rated load and half rated load mode.

Note: Test program is self-repeating throughout the test.

4 SETUP OF EQUIPMENT UNDER TEST

4.1. DESCRIPTION OF SUPPORT UNITS


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Equipment	Model No.	Serial No.	FCC ID / BSMI ID	Brand Name	Data Cable	Power Cord
1.	Variable Resistor	N/A	N/A	N/A	N/Δ	Unshielded, 0.3m X2	N/A
2.	DC Jack Connecter	N/A	N/A	N/A	N/A	Unshielded, 1.8m with a core	N/A

Note:

- *1) All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.*
- 2) Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.2. CONFIGURATION OF SYSTEM UNDER TEST

5 FACILITIES AND ACCREDITATIONS

5.1. FACILITIES

All measurement facilities used to collect the measurement data are located at CCSrf Taiwan Sindian Lab. at No.163-1, Jhongsheng Rd, Sindian City, Taipei County 23151, Taiwan (R.O.C.).

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR 16-1-1, CISPR 16-1-2, CISPR 16-1-3, CISPR 16-1-4 and CISPR 16-1-5.

5.2. ACCREDITATIONS

Our laboratories are accredited and approved by the following accreditation body according to ISO/IEC 17025.

Taiwan	TAF
USA	A2LA

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada	Industry Canada
Norway	Nemko
Japan	VCCI
Taiwan	BSMI
USA	FCC

Copies of granted accreditation certificates are available for downloading from our web site,

http:///www.ccsrf.com

5.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Uncertainty
Conducted emissions	9kHz~30MHz	± 1.7376
Dediated emissions	$30 MHz \sim 200 MHz$	± 3.8992
Radiated emissions	200MHz~1000MHz	± 3.8762

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Consistent with industry standard (e.g. CISPR 22: 2005, clause 11, Measurement Uncertainty) determining compliance with the limits shall be base on the results of the compliance measurement. Consequently the measure emissions being less than the maximum allowed emission result in this be a compliant test or passing test.

The acceptable measurement uncertainty value without requiring revision of the compliance statement is base on conducted and radiated emissions being less than UCISPR which is 3.6dB and 5.2dB respectively. CCS values (called ULab in CISPR 16-4-2) is less than UCISPR as shown in the table above. Therefore, MU need not be considered for compliance.

6 CONDUCTED EMISSION MEASUREMENT

6.1. LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY (MHz)	Class A (dBuV)		Class B (dBuV)	
FREQUENCE (MILZ)	Quasi-peak	Average	Quasi-peak	Average
0.15 - 0.5	79	66	66 - 56	56 - 46
0.50 - 5.0	73	60	56	46
5.0 - 30.0	73	60	60	50

NOTE:

(1) The lower limit shall apply at the transition frequencies.

(2) The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

(3) All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

6.2. TEST INSTRUMENTS

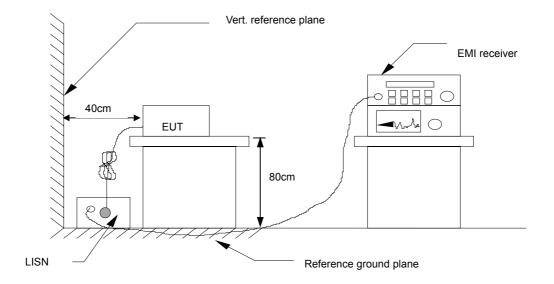
Conducted Emission Room # A					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
TEST RECEIVER	R&S	ESHS20	840455/006	02/12/2008	
LISN (EUT)	SCHWARZBECK	NSLK 8127	8127382	12/06/2007	
LISN	SOLAR	8012-50-R-24-BNC	8305114	12/26/2007	
BNC CABLE	JYE BAO	RG-223/U	BNC A2	10/10/2007	
THERMO- HYGRO METER	ТОР	HA-202	9303-1	02/04/2008	
Test S/W	EMI 32.exe				

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to *NML/ROC* and *NIST/USA*.

2. N.C.R = No Calibration Request.

6.3. TEST PROCEDURES (please refer to measurement standard or CCS SOP PA-031)

Procedure of Preliminary Test


- The EUT and Support equipment, if needed, was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor standing equipment, it is placed on the ground plane, which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- The test equipment EUT installed received AC main power, through a Line Impedance Stabilization Network (LISN), which supplied power source and was grounded to the ground plane.
- All support equipment power received from a second LISN.
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.
- The Receiver scanned from 150kHz to 30MHz for emissions in each of the test modes.
- During the above scans, the emissions were maximized by cable manipulation.
- The test mode(s) described in Item 3.1 were scanned during the preliminary test.
- After the preliminary scan, we found the test mode described in Item 3.1 producing the highest emission level.
- The EUT configuration and cable configuration of the above highest emission levels were recorded for reference of the final test.

Procedure of Final Test

- EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.
- The test data of the worst-case condition(s) was recorded.

6.4. TEST SETUP

• For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

6.5. DATA SAMPLE

Freq. MHz	Read Level dBuV	Factor dB	Level dBuV	Limit dBuV	Over Limit dB	Reading Type (P/Q/A)	Line (L1/L2)
X.XX	42.95	0.55	43.50	56	-12.50	Q	L1

Freq.	= Emission frequency in MHz
Read Level	= Uncorrected Analyzer/Receiver reading
Factor	= Insertion loss of LISN + Cable Loss
Level	= Read Level + Factor
Limit	= Limit stated in standard
Over Limit	= Reading in reference to limit
Р	= Peak Reading
Q	= Quasi-peak Reading
А	= Average Reading
L1	= Hot side
L2	= Neutral side

Calculation Formula

Over Limit (dB) = Level (dBuV) - Limit (dBuV)

6.6. TEST RESULTS

Model No.	IK TPS50-4810DT 3P	6dB Bandwidth	10 KHz
Environmental Conditions	20°C, 70% RH, 1010mbar	Test Mode	Mode 4
Tested by	Alex Pan		

(The chart below shows the highest readings taken from the final data.)

	Six Highest Conducted Emission Readings						
Free	quency Ran	ge Investiga	ated		150 KHz to	30 MHz	
Freq (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV)	Limit Line (dBuV)	Over Limit (dB)	Reading Type (P/Q/A)	Line (L1/L2)
0.168	58.38	0.46	58.84	65.08	-6.24	Р	L1
0.168	41.99	0.46	42.45	55.08	-12.63	Α	L1
0.183	56.14	0.41	56.55	64.33	-7.77	Р	L1
0.183	37.22	0.41	37.63	54.33	-16.69	Α	L1
3.565	49.46	0.71	50.17	56.00	-5.83	Р	L1
3.565	29.40	0.71	30.11	46.00	-15.89	Α	L1
0.168	56.94	0.11	57.05	65.08	-8.03	Р	L2
0.168	38.03	0.11	38.14	55.08	-16.94	Α	L2
3.584	49.24	0.29	49.53	56.00	-6.47	Р	L2
3.584	28.69	0.29	28.98	46.00	-17.02	Α	L2

NOTE: 1. *L*1 = *Line One (Live Line) / L*2 = *Line Two (Neutral Line)*

2. Those frequencies only show peak emission level because that was below the Average limit, so no need to check average anymore.

7 RADIATED EMISSION MEASUREMENT

7.1. LIMITS OF RADIATED EMISSION MEASUREMENT

Below 1GHz (for digital device)

FREQUENCY (MHz)	dBuV/m (At 10m)		
	Class A	Class B	
30~230	40	30	
230~1000	47	37	

Limit tables for non-digital device:

Class A Radiated Emission limit at 10m (for others)

Frequency (MHZ)	Field Strength Limit (uV/m)Q.P.	Field Strength Limit (dBuV/m)Q.P.
30 - 88	90	39
88 - 216	150	43.5
216 - 960	210	46.4
Above 960	300	49.5

Class B Radiated Emission limit at 3m (for others)

Frequency (MHZ)	Field Strength Limit (uV/m)Q.P.	Field Strength Limit (dBuV/m)Q.P.
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

Above 1GHz(for all device)

Frequency	Class A (dBuV/m) (At 10m)		Class B (dBuV/m) (At 3m)	
(MHZ)	Average	Peak	Average	Peak
Above 1000	49.5	69.5	54	74

NOTE: 1. The lower limit shall apply at the transition frequencies.

- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
 - 3. The measurement above 1GHz is at close-in distances 3m,and determine the limit L2 corresponding to the close-in distance d2 by applying the following relation: L2 = L1 (d1/d2), where L1 is the specified limit in microvolts per metre (uV/m) at the distance d1 (10m), L2 is the new limit for distance d2 (3m). So the new Class A limit above 1GHz at 3m is as following table:

Frequency	Class A (dBuV/m) (At 3m)		
(MHZ)	Average	Peak	
Above 1000	60	80	

According to FCC Part 15.33 (b), for an unintentional radiator, including a digital device, the spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a radiated emission limit is specified, up to the frequency shown in the following table:

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.75	30
1.75-108	1000
108-500	2000
500-1000	5000
Above 1000	5 th harmonic of the highest frequency or 40GHz, whichever is lower

7.2. TEST INSTRUMENTS

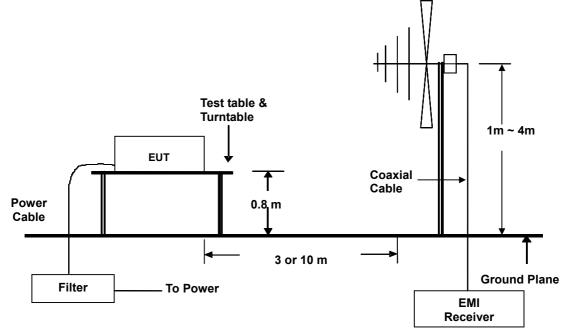
Open Area Test Site # H					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
SITE NSA	CCS	H Site	N/A	10/08/2007	
MEASURE RECEIVER	SCHAFFNER	SCR 3501	341	09/11/2007	
SPECTRUM ANALYZER	ADVANTEST	R3132	120900002	No Calibration Required	
ANTENNA	SCHAFFNER	CBL 6112B	2801	09/22/2007	
AMPLIFIER	SCHAFFNER	CPA9231A	3613	10/10/2007	
CABLE	BELDEN	9913	N-TYPE #H3	03/06/2008	
THERMO- HYGRO METER	TFA	N/A	NO.1	12/24/2007	
Test S/W	Lab VIEW 5.1				

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to *NML/ROC* and *NIST/USA*.

2. N.C.R = No Calibration Request.

7.3. TEST PROCEDURES (please refer to measurement standard or CCS SOP PA-031)

Procedure of Preliminary Test


- The equipment was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane. When the EUT is a floor standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- Support equipment, if needed, was placed as per ANSI C63.4.
- All I/O cables were positioned to simulate typical usage as per ANSI C63.4.
- The EUT received AC power source from the outlet socket under the turntable. All support equipment power received from another socket under the turntable.
- The antenna was placed at 10 meter away from the EUT as stated in ANSI C63.4. The antenna connected to the Spectrum Analyzer via a cable and at times a pre-amplifier would be used.
- The Analyzer / Receiver quickly scanned from 30MHz to 40GHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- The test mode(s) described in Item 3.1 were scanned during the preliminary test:
- After the preliminary scan, we found the test mode described in Item 3.1 producing the highest emission level.
- The EUT and cable configuration, antenna position, polarization and turntable position of the above highest emission level were recorded for the final test.

Procedure of Final Test

- EUT and support equipment were set up on the turntable as per the configuration with highest emission level in the preliminary test.
- The Analyzer / Receiver scanned from 30MHz to 40GHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and only Q.P. reading is presented.
- The test data of the worst-case condition(s) was recorded.

7.4. TEST SETUP

• For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

7.5. DATA SAMPLE

Below 1GHz

Freq. MHz	Amptd dBuV/m	Margin dB	Limit dBuV/m	Reading dBuV	Factor dB/m	Reading Type (P/Q/A)	Pol. (H/V)
X.XX	26.2	-3.8	30	14	12.2	Q	Н

Freq.	= Emission frequency in MHz
Read Level	= Uncorrected Analyzer/Receiver reading
Factor	= Antenna Factor + Cable Loss + Attenuator (3/6/10dB) – Amplifier Gain
Level	= Read Level + Factor
Limit	= Limit stated in standard
Over Limit	= Reading in reference to limit
Р	= Peak Reading
Q	= Quasi-peak Reading
А	= Average Reading
Н	= Antenna Polarization: Horizontal
V	= Antenna Polarization: Vertical

Calculation Formula

Over Limit (dB) = Level (dBuV/m) – Limit (dBuV/m)

Above 1GHz

Freq.	Reading	Factor	Result	Limit	Margin	Detector	Pol.
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(P/A)	(H/V)
X.XX	42.95	0.55	43.50	54	-10.50	А	

Freq. Reading Factor Result Limit Margin P Q A	 = Emission frequency in MHz = Uncorrected Analyzer/Receiver reading = Antenna Factor + Cable Loss - Amplifier Gain = Reading + Factor = Limit stated in standard = Reading in reference to limit = Peak Reading = Quasi-peak Reading = Average Reading
1 0	e
A	= Average Reading
H V	= Antenna Polarization: Horizontal = Antenna Polarization: Vertical

Calculation Formula

Margin (dB) = Result (dBuV/m) – Limit (dBuV/m)

7.6. TEST RESULTS

Below 1GHz

Model No.	KTPS50-4810DT 3P	Test Mode	Mode 3
Environmental Conditions	120° C 80° RH 1010 mbar	6dB Bandwidth	120 KHz
Antenna Pole	Vertical	Antenna Distance	10m
Detector Function	Quasi-peak.	Tested by	Benson Yang

(The chart below shows the highest readings taken from the final data.)

Six Highest Radiated Emission Readings							
Fre	quency Ran	ge Investigat	ed	30 N	1Hz to 1000	MHz at 10	m
Freq. MHz	Amptd dBuV/m	Margin dB	Limit dBuV/m	Reading dBuV	Factor dB/m	Reading Type (P/Q/A)	Pol. (H/V)
42.8800	22.99	-7.01	30.00	39.90	-16.91	Q	V
53.0500	22.31	-7.69	30.00	42.00	-19.69	Q	V
59.1700	20.76	-9.24	30.00	42.70	-21.94	Q	V
112.4700	24.82	-5.18	30.00	41.00	-16.18	Q	V
118.5800	24.68	-5.32	30.00	40.40	-15.72	Q	V
160.1400	23.16	-6.84	30.00	39.70	-16.54	Q	V

REMARKS: 1. 30MHz to 1000MHz test is Applicable CISPR 22 / EN 55022 standard.

2. The other emission levels were very low against the limit.

3. P= Peak Reading; Q= Quasi-peak Reading A= Average Reading.

Model No.	KTPS50-4810DT 3P	Test Mode	Mode 3
Environmental Conditions	20°C, 80% RH, 1010mbar	6dB Bandwidth	120 KHz
Antenna Pole	Horizontal	Antenna Distance	10m
Detector Function	Quasi-peak.	Tested by	Benson Yang

(The chart below shows the highest readings taken from the final data.)

Six Highest Radiated Emission Readings							
Fre	quency Ran	ge Investigat	ed	30 N	1Hz to 1000	MHz at 101	n
Freq. MHz	Amptd dBuV/m	Margin dB	Limit dBuV/m	Reading dBuV	Factor dB/m	Reading Type (P/Q/A)	Pol. (H/V)
42.6600	21.95	-8.05	30.00	38.70	-16.75	Q	Н
52.1800	18.53	-11.47	30.00	37.90	-19.37	Q	Н
61.2100	18.87	-11.13	30.00	40.90	-22.03	Q	Н
72.6600	18.34	-11.66	30.00	38.90	-20.56	Q	Н
112.4400	22.32	-7.68	30.00	38.50	-16.18	Q	Н
159.8700	21.37	-8.63	30.00	37.90	-16.53	Q	Н

REMARKS: 1. 30MHz to 1000MHz test is Applicable CISPR 22 / EN 55022 standard.

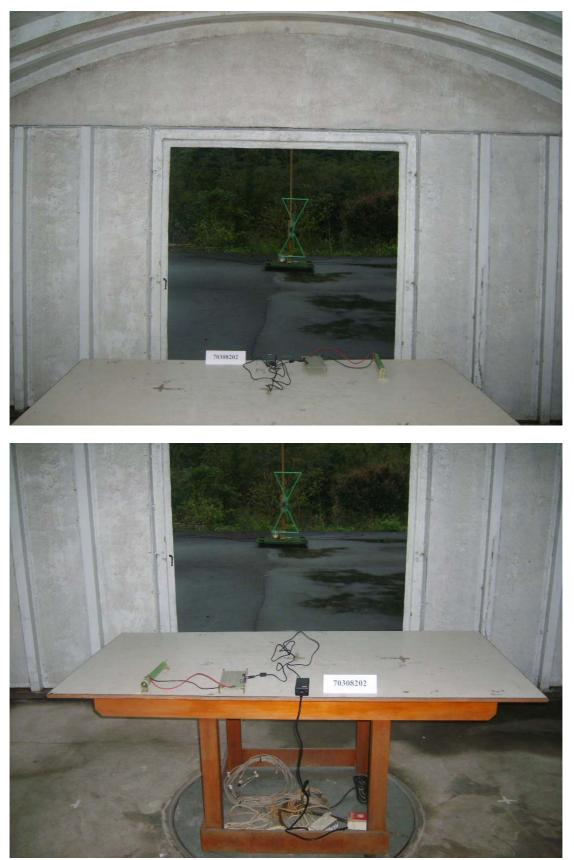
2. The other emission levels were very low against the limit.

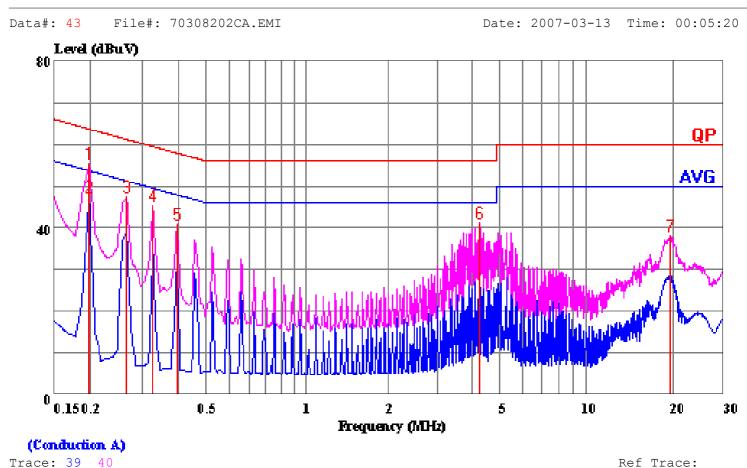
3. P= Peak Reading; Q= Quasi-peak Reading A= Average Reading

. Above 1GHz

Model No.	N/A	Test Mode	N/A
Environmental Conditions	N/A	6dB Bandwidth	N/A
Antenna Pole	N/A	Antenna Distance	N/A
Highest frequency generated or used	75kHz	Upper frequency	See note
Detector Function	N/A	Tested by	N/A

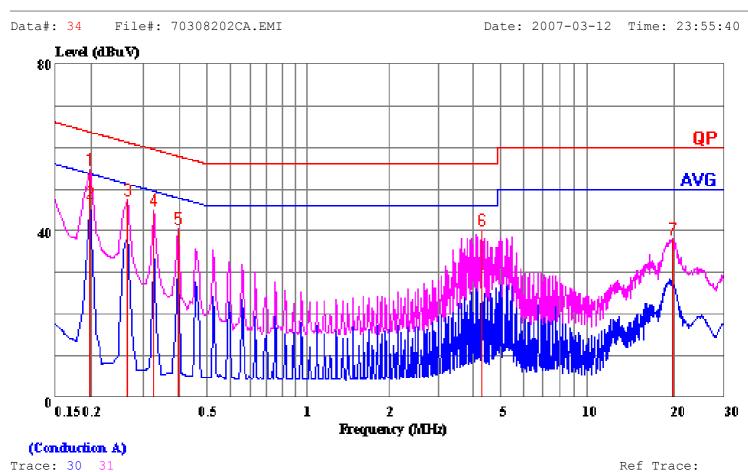
Note: No applicable, when the highest frequency of the internal sources of the EUT is less than 108MHz, the measurement shall only be made up to 1 GHz.


8 PHOTOGRAPHS OF THE TEST CONFIGURATION CONDUCTED EMISSION TEST



RADIATED EMISSION TEST

No. 199, Chung Sheng Road, Hsin Tien City, Taipei, Taiwan, R.O.C. Tel:02-2217-0894 Fax:02-2217-1029


Ref Trace:

Condition: LINE Report No. : 70308202 Test Engr. : Benson Yang : KAGA ELECTRONICS (USA) INC. Company : KTPS50-4810DT 3P EUT Test Config : EUT / ALL PERIPHERALS Type of Test: FCC CLASS B Mode of Op. : Half Rating Load Mode / WORST

Read Limit Over Freq Level Factor Level Line Limit Remark MHz dBuV ____ dB dBuV dBuV dB 0.198 54.90 0.42 55.32 63.71 -8.39 Peak 1 2 0.198 46.98 0.42 47.40 53.71 -6.31 Average 3 0.51 47.41 61.20 -13.79 Peak 0.267 46.90 4 0.327 44.69 0.58 45.27 59.53 -14.26 Peak 5 0.396 40.20 0.65 40.86 57.95 -17.09 Peak 6 4.315 40.30 0.81 41.11 56.00 -14.89 Peak 7 19.740 36.19 1.73 37.92 60.00 -22.08 Peak

Page: 1

No. 199, Chung Sheng Road, Hsin Tien City, Taipei, Taiwan, R.O.C. Tel:02-2217-0894 Fax:02-2217-1029

Ref Trace:

Condition: NET	JTRAL
Report No. :	70308202
Test Engr. :	Benson Yang
Company :	KAGA ELECTRONICS (USA) INC.
EUT :	KTPS50-4810DT 3P
Test Config :	EUT / ALL PERIPHERALS
Type of Test:	
Mode of Op. :	Half Rating Load Mode / WORST

Page: 1

	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark	
	MHz	dBuV	dB	dBuV	dBuV	dB		
1 2 3 4 5 6 7	0.198 0.198 0.267 0.327 0.396 4.384 19.950	54.72 46.44 47.37 44.77 40.50 39.81 36.49	0.15 0.15 0.15 0.16 0.40 1.44	47.52	53.71 61.20 59.53 57.95 56.00	-8.84 -7.12 -13.68 -14.61 -17.29 -15.79 -22.07	Average Peak Peak Peak Peak	

Custom Name: KAGA ELECTRONICS (USA) INC. Model Name: KTPS50-4810DT 3P Test Mode: Full Rating Load Mode / WORST Project No.: 70308202 Engineer Name: Benson Yang Date: 2007-03-12

ЧЪ	nV/m		EN:	55022 C	lass-B 10n	n Vertical						
80-dB	uv/m					, or do da						Limit -
70-									_			-6 dB ~
												Peak '
60-												QP
50-												4
40												1
30-												
		×	×			ŤŤ	×		_			
20-												1
10-									_			4
												MHz
0- - 30					100						3	
												00
80-08	uV/m		EN:	5022 C	lass-B 10n	n Vertical						7
												Limit -
70-									-			-6 dB /
60-												Peak ' QP K
~												QP (
50-												1
40												-
30-												
]
20												-
10-												
10-												
0-											 '	MHz
300		I	I	L		L						000
	Freq(MHz)	Peak(dBuV/m)	QP(dBuV/m)	Margin(dB)	Limit(dBuV/m)	Reading(dBuV)	Factor(dB)	Height	Degree		Comment	
	1 42.8800	-16.91	22.99	-7.01	30.00	39.90	-16.91	100	0			
	2 53.0500	-19.69	22.31	-7.69	30.00	42.00	-19.69	100	0			
	3 59.1700	-21.94	20.76	-9.24	30.00	42.70	-21.94	100	0			
	4 112.4700	-16.18	24.82	-5.18		41.00	-16.18	100	0			
	S 118.5800	-15.72	24.68			40.40	-15.72	100	0			
	5 160.1400	-16.54	23.16	-6.84	30.00	39.70	-16.54	100	0			
	_											
	_											
	_											
	_											
1		1		1			I					

Custom Name: KAGA ELECTRONICS (USA) INC. Model Name: KTPS50-4810DT 3P Test Mode: Full Rating Load Mode / WORST

Index: EN55022 Class-B 10m Horizontal dBuV/m 80 Limit 70 -6 dB Peak I 60 QP 50 40 30 20 10 MHz 0-300 100 30 EN55022 Class-B 10m Horizontal <u>dBuV/m</u> 80-Limit 70 -6 dB Peak 🛛 бО QP 📢 50 40 30-20 10 MHz 0-1000 300 Freq(MHz) Peak(dBuV/m) QP(dBuV/m) Margin(dB) Limit(dBuV/m) Reading(dBuV) Factor(dB) Height Degree Comment 1 42.6600 -16.75 21.95 -8.05 30.00 38.70 -16.75 100 0 2 52.1800 -19.37 18.53 -11.47 30.00 37.90 -19.37 100 0 61.2100 -22.03 -11.13 40.90 -22.03 100 0 3 18.87 30.00 72.6600 -20.56 18.34 -11.66 30.00 -20.56 100 0 4 38.90 5 112.4400 -16.18 22.32 -7.68 30.00 38.50 -16.18 100 0 б 159.8700 -16.53 21.37 -8.63 30.00 37.90 -16.53 100 0

PHOTOGRAPHS OF EUT Model: KTPS50-4810DT 3P

Model: KTPS50-2025DT 3P

Model: KTPS50-1242DT 3P

Model: KTPS45-0950DT 3P

Model: KTPS36-0940DT 3P

Model: KTPS50-1926DT 3P

Model: KTPS50-2421DT 3P

Model: KTPS40-1233DT 3P

Model: KTPS50-1533DT 3P

Model: KTPS50-1827DT 3P

