

CE EMC TEST REPORT

for

AC ADAPTER

MODEL: KTPS05-03315U-VI; KTPS05-05010U-VI; KTPS05-05015U-VI; KTPS05-06012U-VI; KTPS05-07510U-VI; KTPS05-09006U-VI; KTPS05-12006U-VI; KTPS05-15005U-VI; KTPS05-18033U-VI; KTPS05-24025U-VI

> Test Report Number: T170419D01-F

> > Issued to:

KAGA ELECTRONICS (USA) INC.

780 Montague Expy, Suite 403 San Jose, CA 95131 USA

Issued by:

Compliance Certification Services Inc.

Xindian Lab.

No.163-1, Jhongsheng Rd., Xindian Dist., New Taipei City, 23151 Taiwan.

TEL: 886-2-22170894 FAX: 886-2-22171029

Issued Date: April 21, 2017

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, A2LA, NVLAP, NIST or any government agencies. The test results in the report only apply to the tested sample.

Revision History

	Issue		Effect	
Rev.	Date	Revisions	Page	Revised By
00	September 17, 2015	Initial Issue	ALL	Linda Wu
01	December 3, 2015	Add two Models	ALL	Linda Wu
02	March 6, 2017	Standard replace: EN 55032+EN 55024	ALL	Linda Wu
03	April 21, 2017	Copy Report	ALL	Linda Wu

TABLE OF CONTENTS

1		TEST CERTIFICATION	4
2		TEST RESULT SUMMARY	5
3		EUT DESCRIPTION	6
4		TEST METHODOLOGY	
	4.1.	DECISION OF FINAL TEST MODE	7
	4.2.	EUT SYSTEM OPERATION	7
5		SETUP OF EQUIPMENT UNDER TEST	8
	5.1.	DESCRIPTION OF SUPPORT UNITS	8
	5.2.	CONFIGURATION OF SYSTEM UNDER TEST	8
6		FACILITIES AND ACCREDITATIONS	9
	6.1.	FACILITIES	9
	6.2.	ACCREDITATIONS	9
	6.3.	MEASUREMENT UNCERTAINTY	9
7		EMISSION TEST	10
		CONDUCTED EMISSION MEASUREMENT	.10
		REQUIREMENTS FOR ASYMMETRIC MODE CONDUCTED EMISSIONS	
		RADIATED EMISSION MEASUREMENT	
		CONDUCTED DIFFERENTIAL VOLTAGE EMISSIONS FROM CLASS B EQUIPMENT.	
		HARMONICS CURRENT MEASUREMENT	
	7.6.	VOLTAGE FLUCTUATION AND FLICKER MEASUREMENT	
8		IMMUNITY TEST	
		GENERAL DESCRIPTION	
		GENERAL PERFORMANCE CRITERIA DESCRIPTION	
		ELECTROSTATIC DISCHARGE (ESD)	
		RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD (RS)	
		ELECTRICAL FAST TRANSIENT (EFT)	
		SURGE IMMUNITY TEST	
		CONDUCTED RADIO FREQUENCY DISTURBANCES (CS)	
		POWER FREQUENCY MAGNETIC FIELD	
_	8.9.	VOLTAGE DIPS & VOLTAGE INTERRUPTIONS	
9		PHOTOGRAPHS OF THE TEST CONFIGURATION	84
Δ	PPF	NDIX 1 - PHOTOGRAPHS OF FUT	1-1

TEST CERTIFICATION

Product: AC ADAPTER

Model: KTPS05-03315U-VI; KTPS05-05010U-VI; KTPS05-05015U-VI;

KTPS05-06012U-VI; KTPS05-07510U-VI; KTPS05-09006U-VI; KTPS05-12006U-VI; KTPS05-15005U-VI; KTPS05-18033U-VI;

KTPS05-24025U-VI

Brand:

Applicant: KAGA ELECTRONICS (USA) INC.

780 Montague Expy, Suite 403 San Jose, CA 95131 USA

Manufacturer: KAGA ELECTRONICS (USA) INC.

780 Montague Expy, Suite 403 San Jose, CA 95131 USA

Tested: August 11, 2015 ~ March 5, 2017

EN 55032: 2012 / AC: 2013, Class B **Applicable** CISPR 32: 2012

Standards: AS/NZS CISPR 32: 2013

EN 61000-3-2: 2014 EN 61000-3-3: 2013 EN 55024: 2010 + A1: 2015

EN 61000-4-2: 2009 / IEC 61000-4-2: 2008 ED. 2.0 EN 61000-4-3: 2006 + A1: 2008 + A2: 2010 /

IEC 61000-4-3: 2006 + A1: 2007 + A2: 2010 ED. 3.2 EN 61000-4-4: 2012 / IEC 61000-4-4: 2012 ED. 3.0 EN 61000-4-5: 2014 / IEC 61000-4-5: 2014 ED. 3.0 EN 61000-4-6: 2014 / IEC 61000-4-6: 2013 ED. 4.0

EN 61000-4-8: 2010 / IEC 61000-4-8: 2009 ED. 2.0 EN 61000-4-11: 2004 / IEC 61000-4-11: 2004 ED. 2.0

Deviation from Applicable Standard

None

The above equipment was tested by Compliance Certification Services Inc. for compliance with the requirements of technical standards specified above under the EMC Directive 2014/30/EU. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by: Reviewed by: Sam Hu Eva Fan Assistant Manager Supervisor of report document dept.

TEST RESULT SUMMARY 2

EMISSION							
Standard Item Result Remarks							
	Conducted (Power Port)	PASS	Meet Class B limit				
EN 55000, 0040 / AQ, 0040	Conducted (Telecom port)	N/A	Please see the page 17				
EN 55032: 2012 / AC: 2013 CISPR 32: 2012 AS/NZS CISPR 32: 2013	Radiated	PASS	Meet Class B limit				
7.6.112.5 6161 11.62. 2010	Radiated emissions from FM receivers	N/A	Please see the page 26				
	Conducted differential voltage emissions from Class B equipment	N/A	Please see the page 29				
EN 61000-3-2: 2014	Harmonic current emissions	PASS	Meet Class A limit				
EN 61000-3-3: 2013	Voltage fluctuations & flicker	PASS	Meets the requirements				

IMMUNITY [EN 55024 (2010 + A1: 2015)]							
Standard	Item	Result	Remarks				
EN 61000-4-2: 2009 IEC 61000-4-2: 2008 ED. 2.0	ESD	PASS	Meets the requirements of Performance Criterion A				
EN 61000-4-3: 2006 + A1: 2008 + A2: 2010 IEC 61000-4-3: 2006 + A1: 2007 + A2: 2010 ED. 3.2	RS	PASS	Meets the requirements of Performance Criterion A				
EN 61000-4-4: 2012 IEC 61000-4-4: 2012 ED. 3.0	EFT	PASS	Meets the requirements of Performance Criterion A				
EN 61000-4-5: 2014 IEC 61000-4-5: 2014 ED. 3.0	Surge	PASS	Meets the requirements of Performance Criterion A				
EN 61000-4-6: 2014 IEC 61000-4-6: 2013 ED. 4.0	CS	PASS	Meets the requirements of Performance Criterion A				
EN 61000-4-8: 2010 IEC 61000-4-8: 2009 ED. 2.0	PFMF	PASS	Meets the requirements of Performance Criterion A				
EN 61000-4-11: 2004 IEC 61000-4-11: 2004 ED. 2.0	Voltage dips & voltage variations	PASS	Meets the requirements of Voltage Dips: 1) >95% reduction Performance Criterion A 2) 30% reduction Performance Criterion A Voltage Interruptions: 1) >95% reduction Performance Criterion B				

1. The statements of test result on the above are decided by the request of test standard only; the measurement uncertainties are not factored into this compliance determination.

2. The information of measurement uncertainty is available upon the customer's request.

EUT DESCRIPTION

Product	AC ADAPTER
Brand Name	Volgen
	KTPS05-03315U-VI; KTPS05-05010U-VI; KTPS05-05015U-VI;
Madal	KTPS05-06012U-VI; KTPS05-07510U-VI; KTPS05-09006U-VI;
Model	KTPS05-12006U-VI; KTPS05-15005U-VI; KTPS05-18033U-VI;
	KTPS05-24025U-VI
Applicant	KAGA ELECTRONICS (USA) INC.
Housing material	Plastic
Identify Number	T150806D06
Received Date	August 6, 2015
EUT Power Rating	Please see the model differences
AC Power During Test	110VAC / 50Hz & 230VAC / 50Hz

Model Differences

Model Name	Input Rating	Output Rating	Test (Check)
KTPS05-03315U-VI		3.30VDC, 1.50A, 4.950W	
KTPS05-05010U-VI		5.00VDC, 1.00A, 5.000W	
KTPS05-05015U-VI		5.00VDC, 1.50A, 7.500W	
KTPS05-06012U-VI		5.90VDC, 1.20A, 7.080W	
KTPS05-07510U-VI	100-240VAC, 50-60Hz,	7.50VDC, 1.00A, 7.500W	
KTPS05-09006U-VI	0.19A Max	9.00VDC, 0.67A, 6.030W	
KTPS05-12006U-VI		12.00VDC, 0.60A, 7.200W	
KTPS05-15005U-VI		15.00VDC, 0.50A, 7.500W	
KTPS05-18033U-VI		18.00VDC, 0.33A, 5.940W	
KTPS05-24025U-VI		24.00VDC, 0.25A, 6.000W	\boxtimes

I/O PORT

I/O PORT TYPES	Q'TY	TESTED WITH

Note: None.

TEST METHODOLOGY

4.1. DECISION OF FINAL TEST MODE

The EUT was tested together with the below additional components, and a configuration, which produced the worst emission levels, was selected and recorded in this report.

The test configuration/ mode is as the following:

Mode:

1	KTDS05-24025H-VI	Full Rated Load Mode	110VAC, 50Hz
2	K11 303-240230-VI	I uli Nateu Load Wode	230VAC, 50Hz

Worst:

Conduction: Mode 2 Radiation: Mode 2

4.2. EUT SYSTEM OPERATION

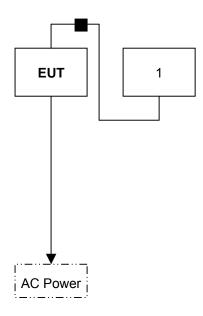
To adjust variable resistor to test EUT.

Note: Test program is self-repeating throughout the test.

SETUP OF EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


Peripherals Devices:

No.	Equipment	Model No.	Serial No.	FCC ID / BSMI ID	Brand Name	Data Cable	Power Cord
1	Variable Resistor	N/A	N/A	N/A	N/A	N/A	Unshielded, 1.5m with a core

Note:

- 1) All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2) Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

5.2. CONFIGURATION OF SYSTEM UNDER TEST

FACILITIES AND ACCREDITATIONS

6.1. FACILITIES

All measurement facilities used to collect the measurement data are located at CCSrf Taiwan Xindian Lab. at No.163-1, Jhongsheng Rd., Xindian Dist., New Taipei City, 23151 Taiwan.

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR 16-1-1, CISPR 16-1-2, CISPR 16-1-3, CISPR 16-1-4 and CISPR 16-1-5.

6.2. ACCREDITATIONS

Our laboratories are accredited and approved by the following accreditation body according to ISO/IEC 17025.

Taiwan	TAF
USA	A2LA

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada	Industry Canada
Norway	Nemko
Japan	VCCI
Taiwan	BSMI
USA	FCC

Copies of granted accreditation certificates are available for downloading from our web site. http://www.ccsrf.com

6.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Uncertainty
Conducted emissions	0.15MHz ~ 30MHz	± 1.07
Radiated emissions	30MHz ~ 1000MHz	± 4.82

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Consistent with industry standard (e.g. CISPR 22: 2005, clause 11, Measurement Uncertainty) determining compliance with the limits shall be base on the results of the compliance measurement. Consequently the measure emissions being less than the maximum allowed emission result in this be a compliant test or passing test.

The acceptable measurement uncertainty value without requiring revision of the compliance statement is base on conducted and radiated emissions being less than U_{CISPR} which is 3.6dB and 5.2dB respectively. CCS values (called U_{Lab} in CISPR 16-4-2) is less than U_{CISPR} as shown in the table above. Therefore, MU need not be considered for compliance.

EMISSION TEST

7.1. CONDUCTED EMISSION MEASUREMENT

7.1.1. LIMITS

FREQUENCY (MHz)	Class A	A (dBuV)	Class B (dBuV)		
PREQUENCT (MHZ)	Quasi-peak Average		Quasi-peak	Average	
0.15 - 0.5	79	66	66 - 56	56 - 46	
0.50 - 5.0	73	60	56	46	
5.0 - 30.0	73	60	60	50	

NOTE:

- (1) The lower limit shall apply at the transition frequencies.
- (2) The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- (3) All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

7.1.2. TEST INSTRUMENTS

Conducted Emission room # A							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
BNC CABLE	EMCI	CFD300-NL	BNC#A8	05/18/2017			
EMI Test Receiver	R&S	ESCI	101201	08/19/2017			
LISN	Schwarzbeck	NNLK 8129	8129-286	08/18/2017			
LISN(EUT)	Schwarzbeck	NSLK 8127	8127527	08/18/2017			
Pulse Limiter	R&S	ESH3Z2	C3010026-2	08/22/2017			
Thermo-Hygro Meter	Wisewind	201A	No. 02	05/02/2017			
Test S/W	EZ-EMC						

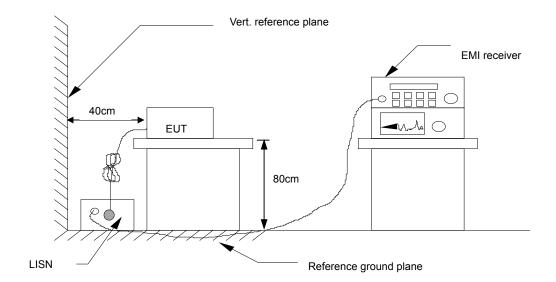
NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R = No Calibration Request.

7.1.3. TEST PROCEDURES (please refer to measurement standard or CCS SOP PA-031 & PA-041)

Reference No.: T170301D08-E Report No.: T170419D01-E

Procedure of Preliminary Test


- The EUT and Support equipment, if needed, was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per EN 55032 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor standing equipment, it is placed on the ground plane, which has a 15 cm non-conductive covering to insulate the EUT from the ground plane.
- All I/O cables were positioned to simulate typical actual usage as per EN 55032.
- The test equipment EUT installed received AC main power, through a Line Impedance Stabilization Network (LISN), which supplied power source and was grounded to the ground plane.
- All support equipment power received from a second LISN.
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.
- The Receiver scanned from 150kHz to 30MHz for emissions in each of the test modes.
- During the above scans, the emissions were maximized by cable manipulation.
- The test mode(s) described in Item 4.1 were scanned during the preliminary test.
- After the preliminary scan, we found the test mode described in Item 4.1 producing the highest emission level.
- The EUT configuration and cable configuration of the above highest emission levels were recorded for reference of the final test.

Procedure of Final Test

- EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.
- A scan was taken on both power lines. Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.
- The test data of the worst-case condition(s) was recorded.

7.1.4. TEST SETUP

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

7.1.5. DATA SAMPLE

Freq.	Reading	Factor	Result	Limit	Margin	Detector	Line
(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	(P/Q/A)	(L1/L2)
x.xx	42.95	0.55	43.50	56	-12.50	Q	

= Emission frequency in MHz Freq.

Reading = Uncorrected Analyzer/Receiver reading

Factor = Insertion loss of LISN + Cable Loss + Pulse Limit

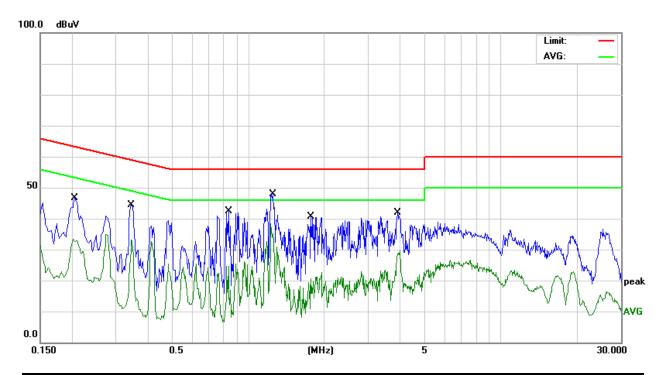
= Reading + Factor Result

Limit = Limit stated in standard = Reading in reference to limit Margin

Р = Peak Reading

Q = Quasi-peak Reading = Average Reading Α

= Hot side L1 L2 = Neutral side


Calculation Formula

Margin (dB) = Result (dBuV) – Limit (dBuV)

7.1.6. TEST RESULTS


Model No.	KTPS05-24025U-VI	6dB Bandwidth	9 kHz
Environmental Conditions	25°C, 58% RH	Test Mode	Mode 2
Tested by	Pipo Hou	Phase	L1
Standard	EN 55032 CLASS B		

	Conducted Emission Readings							
Frequ	uency Rang	je Investiç	gated		150 kHz to	30 MHz		
Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector (P/Q/A)	Line (L1/L2)	
0.2060	32.27	10.10	42.37	63.36	-20.99	Q	L1	
0.2060	22.75	10.10	32.85	53.36	-20.51	Α	L1	
0.3460	32.27	10.10	42.37	59.06	-16.69	Q	L1	
0.3460	20.13	10.10	30.23	49.06	-18.83	Α	L1	
0.8380	27.14	10.12	37.26	56.00	-18.74	Q	L1	
0.8380	8.59	10.12	18.71	46.00	-27.29	Α	L1	
1.2500	34.14	10.16	44.30	56.00	-11.70	Q	L1	
1.2500	22.94	10.16	33.10	46.00	-12.90	Α	L1	
1.7780	23.37	10.26	33.63	56.00	-22.37	Q	L1	
1.7780	5.37	10.26	15.63	46.00	-30.37	Α	L1	
3.9180	24.51	10.34	34.85	56.00	-21.15	Q	L1	
3.9180	16.29	10.34	26.63	46.00	-19.37	Α	L1	

Note: L1 = Line One (Live Line) / L2 = Line Two (Neutral Line).

Model No.	KTPS05-24025U-VI	6dB Bandwidth	9 kHz
Environmental Conditions	25°C, 58% RH	Test Mode	Mode 2
Tested by	Pipo Hou	Phase	L2
Standard	EN 55032 CLASS B		

	Conducted Emission Readings							
Frequ	uency Rang	je Investiç	gated		150 kHz to	30 MHz		
Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector (P/Q/A)	Line (L1/L2)	
0.3460	33.46	10.06	43.52	59.06	-15.54	Q	L2	
0.3460	22.28	10.06	32.34	49.06	-16.72	Α	L2	
0.4780	30.00	10.11	40.11	56.37	-16.26	Q	L2	
0.4780	15.57	10.11	25.68	46.37	-20.69	Α	L2	
0.8460	28.63	10.15	38.78	56.00	-17.22	Q	L2	
0.8460	10.97	10.15	21.12	46.00	-24.88	Α	L2	
1.2540	35.46	10.17	45.63	56.00	-10.37	Q	L2	
1.2540	23.99	10.17	34.16	46.00	-11.84	Α	L2	
2.4580	27.09	10.23	37.32	56.00	-18.68	Q	L2	
2.4580	11.66	10.23	21.89	46.00	-24.11	Α	L2	
3.9340	29.38	10.38	39.76	56.00	-16.24	Q	L2	
3.9340	19.63	10.38	30.01	46.00	-15.99	Α	L2	

Note: L1 = Line One (Live Line) / L2 = Line Two (Neutral Line).

7.2. REQUIREMENTS FOR ASYMMETRIC MODE CONDUCTED **EMISSIONS**

7.2.1. LIMITS

For Class A Equipment

FREQUENCY (MHz)	Voltage L	imit (dBuV)	Current Limit (dBuA)	
FREQUENCT (IVITIZ)	Quasi-peak	Quasi-peak Average		Average
0.15 ~ 0.5	97 ~ 87	84 ~ 74	53 ~ 43	40 ~ 30
0.5 ~ 30.0	87	74	43	30

NOTE: The limits decrease linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

For Class B Equipment

FREQUENCY (MHz)	Voltage L	imit (dBuV)	Current Limit (dBuA)	
FREQUENCT (IVITIZ)	Quasi-peak	Average	Quasi-peak	Average
0.15 - 0.5	84 ~ 74	74 ~ 64	40 ~ 30	30 ~ 20
0.5 - 30.0	74	64	30	20

NOTE: The limits decrease linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

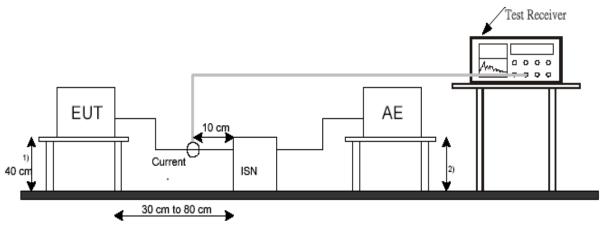
7.2.2. TEST INSTRUMENTS

	Conducted Emission room #							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due				

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R = No Calibration Request.

7.2.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-031)


- Selecting AAN for unscreened cable or a current probe for screened cable to take measurement.
- The port of the EUT was connected to the remote side support equipment through the AAN/Current Probe and communication in normal condition.
- Making a overall range scan by using the test receiver controlled by controller and record at least six highest emissions for showing in the test report.
- Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.
- In case of measuring on the screened cable, the current limit shall be applied; otherwise the voltage limit should be applied.
- The following test modes was scanned during the preliminary test:

N/A

After the preliminary scan, we found the following test mode(s) producing the highest emission level and test data of the worst case was recorded.

N/A

7.2.4. TEST SETUP

- Distance to the ground reference plane (vertical or horizontal).
- 2) Distance to the ground reference plane is not critical.
- For the actual test configuration, please refer to the related item Photographs of the Test Configuration.

7.2.5. DATA SAMPLE

Freq.	Reading	Factor	Result	Limit	Margin	Detector
(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	(P/Q/A)
x.xx	62.95	0.55	63.50	84	-20.50	Q

Freq. = Emission frequency in MHz

= Uncorrected Analyzer/Receiver reading Reading

Factor = Insertion loss of LISN + Cable Losss + Pulse Limit

= Reading + Factor Result

Limit = Limit stated in standard = Reading in reference to limit Margin

= Peak Reading

= Quasi-peak Reading Q Α = Average Reading

Calculation Formula

Margin (dB) = Result (dBuV) - Limit (dBuV)

7.2.6. TEST RESULTS

Model No.	N/A	6dB Bandwidth	N/A
Environmental Conditions	N/A	Test Mode	N/A
Tested by	N/A		

Note: No applicable, the EUT doesn't have LAN Port or Modem port.

7.3. RADIATED EMISSION MEASUREMENT

7.3.1. LIMITS

Below 1GHz

FREQUENCY (MHz)	dBuV/m	(At 10m)	dBuV/m (At 3m)		
TILLEGOLINGT (INITIZ)	Class A	Class A Class B		Class B	
30 ~ 230	40	30	50	40	
230 ~ 1000	47	37	57	47	

Above 1GHz

Frequency (MHz)	Class A (dBu	ıV/m) (At 3m)	Class B (dBuV/m) (At 3m)		
r requericy (initiz)	Average	Peak	Average	Peak	
1000 ~ 3000	56	76	50	70	
3000 ~ 6000	60	80	54	74	

NOTE: The lower limit shall apply at the transition frequencies.

According to EN 55032: 2012 / AC: 2013 Table 1 the measurement frequency range shown in the following table:

Table 1 – Required highest frequency for radiated measurement

Highest internal frequency (F_x)	Highest internal frequency					
F _{x ≤ 108 MHz}	1 GHz					
108 MHz < $F_x \le 500 \text{ MHz}$	2 GHz					
500 MHz < F _x ≤ 1 GHz	5 GHz					
F _{x > 1 GHz}	5 x Fx up to a maximum of 6 GHz					
NOTE 1 For FM and TV broadcast receivers, F_x is determined from the highest frequency generated or						

used excluding the local oscillator and tuned frequencies.

NOTE 2 F_x is defined in 3.1.19.

Where F_x is unknown, the radiated emission measurements shall be performed up to 6 GHz.

Radiated emissions from FM receivers

	Mea	asurement	Class B limit $dB(\mu V/m)$		
Frequency range MHz	Distance	Detector type /	Fundamental	Harmonics	
	m	bandwidth	OATS / SAC (see Table A.1)	OATS / SAC (see Table A.1)	
30 – 230				42	
230 – 300	10		50	42	
300 – 1000		Quasi peak/		46	
30 – 230		120kHz		52	
230 – 300	3		60	52	
300 – 1000				56	

These relaxed limits apply only to emissions at the fundamental and harmonic frequencies of the local oscillator. Signals at all other frequencies shall be compliant with the limits given in 7.3.1 Class B Limit

7.3.2. TEST INSTRUMENTS

Open Area Test Site # H										
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due						
Bilog Antenna	Teseq	CBL 6112D	36995	08/02/2017						
Cable	EMCI	8Dr	N-Type#H10	04/07/2017						
EMI Test Receiver	R&S	ESCI	101340	04/05/2017						
Pre-Amplifier	HP	8447D	1937A01554	09/29/2017						
Thermo-Hygro Meter	Wisewind	201A	No. 03	05/31/2017						
Test S/W	EZ-EMC									

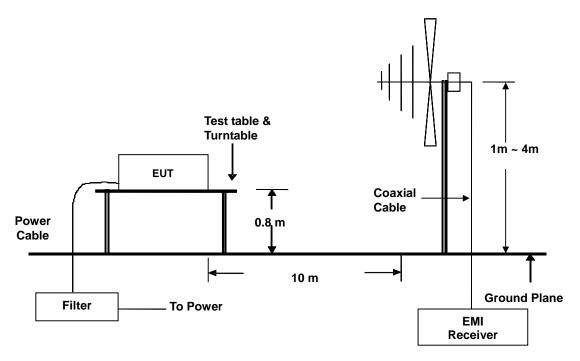
NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R = No Calibration Request.

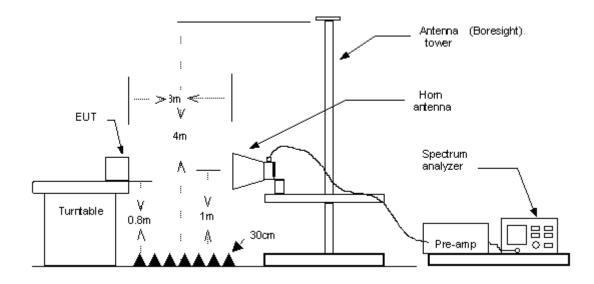
7.3.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-031 & PA-041)

Procedure of Preliminary Test

- The equipment was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane. When the EUT is a floor standing equipment, it is placed on the ground plane which has a 15 cm non-conductive covering to insulate the EUT from the ground plane.
- Support equipment, if needed, was placed as per EN 55032.
- All I/O cables were positioned to simulate typical usage as per EN 55032.
- The EUT received AC power source from the outlet socket under the turntable. All support equipment power received from another socket under the turntable.
- The antenna was placed at 3 or 10 meter away from the EUT as stated in EN 55032. The antenna connected to the Spectrum Analyzer via a cable and at times a pre-amplifier would be used.
- The Analyzer / Receiver quickly scanned from 30MHz to 6000MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- The test mode(s) described in Item 4.1 were scanned during the preliminary test:
- After the preliminary scan, we found the test mode described in Item 4.1 producing the highest emission level.
- The EUT and cable configuration, antenna position, polarization and turntable position of the above highest emission level were recorded for the final test.


Procedure of Final Test

- EUT and support equipment were set up on the turntable as per the configuration with highest emission level in the preliminary test.
- The Analyzer / Receiver scanned from 30MHz to 6000MHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. Below 1GHz the Q.P. reading and above 1GHz the Peak and Average reading are presented.
- The test data of the worst-case condition(s) was recorded.



7.3.4. TEST SETUP

Below 1GHz

Above 1GHz

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

7.3.5. DATA SAMPLE

Below 1GHz

Freq.	Reading	Factor	Result	Limit	Margin	Detector	Pol.
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(P/Q)	(H/V)
X.XX	14.0	12.2	26.2	30	-3.8	Q	

Above 1GHz

Freq.	Reading	Factor	Result	Limit	Margin	Detector	Pol.
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(P/A)	(H/V)
X.XX	42.95	0.55	43.50	54	-10.50	Α	

= Emission frequency in MHz Freq.

Reading = Uncorrected Analyzer/Receiver reading Factor = Antenna Factor + Cable Loss - Amplifier Gain Result = Reading + Factor

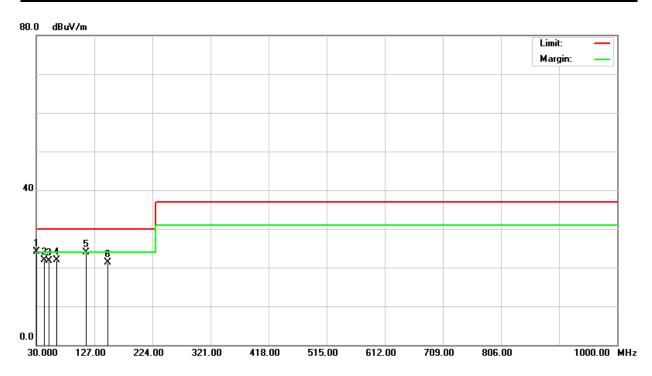
Facio. Result = Reading + Factor = Limit stated in standard Margin = Reading in reference to limit

= Peak Reading Ρ

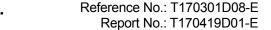
Q = Quasi-peak Reading Α = Average Reading

Н = Antenna Polarization: Horizontal = Antenna Polarization: Vertical

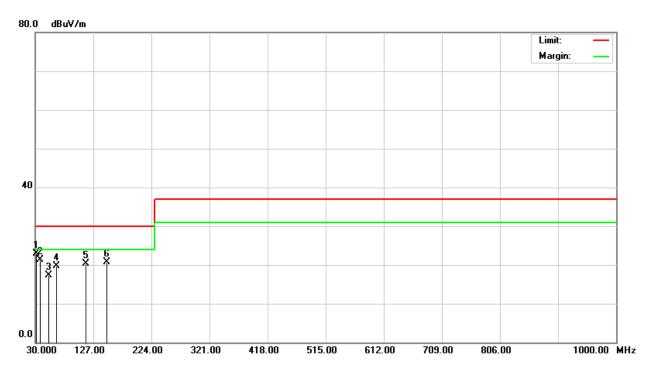
Calculation Formula


Margin (dB) = Result (dBuV/m) - Limit (dBuV/m)

7.3.6. TEST RESULTS


Below 1GHz

Model No.	KTPS05-24025U-VI	Test Mode	Mode 2
Environmental Conditions	26°C, 60% RH	6dB Bandwidth	120 kHz
Antenna Pole	Vertical	Antenna Distance	10m
Detector Function	Quasi-peak.	Tested by	Pipo Hou
Standard	EN 55032 CLASS B		



	Radiated Emission Readings										
Frequency Range Investigated 30 MHz to 1000 MHz at 10m											
Freq. (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)		Margin (dB)	Height (cm)	Degree (°)	Detector (P/Q)	Pol. (H/V)	
30.7500	27.17	-3.00	24.17	30.	.00	-5.83	100	130	Q	٧	
44.0150	31.39	-9.52	21.87	30.	.00	-8.13	100	320	Q	٧	
51.3500	34.71	-12.92	21.79	30.	.00	-8.21	100	155	Q	٧	
64.2800	36.50	-14.55	21.95	30.	.00	-8.05	100	266	Q	٧	
113.2500	32.34	-8.38	23.96	30.00		-6.04	100	334	Q	٧	
149.0500	30.75	-9.49	21.26	30.	00	-8.74	100	270	Q	V	

Note: P= Peak Reading; Q= Quasi-peak Reading.

Model No.	KTPS05-24025U-VI	Test Mode	Mode 2
Environmental Conditions	26°C, 60% RH	6dB Bandwidth	120 kHz
Antenna Pole	Horizontal	Antenna Distance	10m
Detector Function	Quasi-peak.	Tested by	Pipo Hou
Standard	EN 55032 CLASS B		

	Radiated Emission Readings										
Fr	equency R	ange Inves	tigated			30 N	/IHz to 10	00 MHz a	t 10m		
Freq. (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)		Margin (dB)	Height (cm)	Degree (°)	Detector (P/Q)	Pol. (H/V)	
31.3300	26.24	-3.25	22.99	30.	.00	-7.01	400	110	Q	Н	
38.2500	27.86	-6.47	21.39	30.	.00	-8.61	400	260	Q	Н	
52.0400	30.37	-13.14	17.23	30.	.00	-12.77	400	313	Q	H	
66.1500	34.30	-14.53	19.77	30.00		-10.23	400	150	Q	Н	
114.3500	28.49	-8.28	20.21	30.00		-9.79	400	266	Q	Н	
150.2500	30.20	-9.57	20.63	30.	.00	-9.37	400	325	Q	Н	

Note: P= Peak Reading; Q= Quasi-peak Reading.

Above 1GHz

Model No.	KTPS05-24025U-VI	Test Mode	N/A
Environmental Conditions	N/A	6dB Bandwidth	N/A
Antenna Pole	N/A	Antenna Distance	N/A
Highest frequency generated or used	108KHz	Upper frequency	See note
Detector Function	N/A	Tested by	N/A

Note: No applicable, when the highest frequency of the internal sources of the EUT is less than 108MHz, the measurement shall only be made up to 1 GHz.

Radiated emissions from FM receivers

Model No.	N/A	Test Mode	N/A
Environmental Conditions	N/A	6dB Bandwidth	N/A
Antenna Pole	N/A	Antenna Distance	N/A
Detector Function	N/A	Tested by	N/A

Note: No applicable, the EUT doesn't have FM port.

7.4. CONDUCTED DIFFERENTIAL VOLTAGE EMISSIONS FROM CLASS **B EQUIPMENT**

Applicable to

- 1. TV broadcast receiver tuner ports with an accessible connector
- 2. RF modulator output ports
- 3. FM broadcast receiver tuner ports with an accessible connector

		Class B limi		
Frequency range		DB(μV) 75		
MHz	other	Local Oscillator Fundamental	Local Oscillator Harmonics	Applicability
30 – 950	46	46	46	See a)
950 – 2 150	46	54	54	occ a)
950 – 2 150	46	54	54	See b)
30 – 300	46	54	50	See c)
300 – 1 000	40	54	52	3ee c)
30 – 300	46	66	59	See d)
300 – 1 000	7	00	52	oee u)
30 – 950	46	76	46	See e)
950 – 2 150	†	n/a	54)

- a) Television receivers (analogue or digital), video recorders and PC TV broadcast receiver tuner cards working in channels between 30 MHz and 1 GHz, and digital audio receivers.
- b) Tuner units (not the LNB) for satellite signal reception.
- c) Frequency modulation audio receivers and PC tuner cards.
- d) Frequency modulation car radios.
- e) Applicable to EUTs with RF modulator output ports (for example DVD equipment, video recorders, camcorders and decoders etc.) designed to connect to TV broadcast receiver tuner ports.

Testing is required at only one EUT supply voltage and frequency.

The term 'other' refers to all emissions other than the fundamental and the harmonics of the local oscillator.

The test shall be performed with the device operating at each reception channel.

The test shall cover the entire frequency range.

7.4.1. TEST PROCEDURES (please refer to measurement standard or CCS SOP PA-041)

Procedure of Preliminary Test

- The equipment was set up as per the test configuration to simulate typical usage per the user's manual. The EUT was place on a wooden table with a height of 0.8 meters was used that was placed on the ground plane.
- Support equipment, if needed, was placed as per EN 55032.
- All I/O cables were positioned to simulate typical usage as per EN 55032.
- The EUT received AC power source, from the outlet socket. All support equipment received power was from another socket.
- Added a 75 \longleftrightarrow 50 Ω matching network, between EUT and EMI test receiver to get impedance match condition during the test.
- The output level of the auxiliary signal generator shall be set to give the value of 60 dB (μV) for FM receiver or 70 dB (μV) for TV and VCR to the input of the frequency-modulation or television receiver (or video recorder) respectively, on a 75 Ω impedance. An additional amplifier should be insert at the generator output, if necessary.
- The output level of the auxiliary signal generator shall be a standard TV color bar Move signal for TV receivers and video recorders with sound carrier that defined in Table A12 of EN 55032 . An additional amplifier should be insert at the generator output, if necessary.
- The results shall be expressed in the terms of the substitution voltage in decibels (μV), as supplied by the standard signal generator. The specified source impedance of the receiver shall be stated with the results.
- When measurements are made at the antenna terminals of the EUT, an auxiliary signal generator shall be used to feed the equipment under test input with a standard test signal (see Table A.12 of CISPR 32/EN 55032) at the receiver tuning frequency (30MHz to 2150MHz).
- The test mode(s) described in Item 4.1 were scanned during the preliminary test:
- After the preliminary scan, we found the test mode described in Item 4.1 producing the highest emission level.
- The EUT and cable configuration of the above highest emission levels were recorded for the final test.

Procedure of Final Test

- EUT and support equipment were set up on the table as per the configuration with highest emission level in the preliminary test.
- The Analyzer / Receiver scanned from 30MHz to 2150MHz. recorded the value, the local frequency, amplitude, were recorded in which correction factors were used to calculate the emission level and compare reading to the applicable limit, and only Q.P reading will record in this report.
- Recorded at least the six highest emissions. Emission frequencies, amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and only Q.P. reading is presented.
- The test data of the worst-case condition(s) was recorded.

7.4.2. DATA SAMPLE

Freq. (MHz)	Matching Factor (dB)	Spectrum Reading (dBuV)	SG Level (dBuV)	Emission (dBuV)	Limit Line (dBuV)	Over Limit (dB)	Note (F/H/O)
X.XX	12.2	14.0	38.4	26.2	46	-19.8	F

= Emission frequency in MHz Freq.

Matching Factor = Matching network($50/75\Omega$) attenuation

Spectrum Reading=Spectrum analyzer reading S.G. Level = Standard S.G. output level Emission = SG Level - Matching Factor = Limit stated in standard Limit Line Over Limit = Reading in reference to limit

F = Fundamental Η = Harmonics 0 = Other

Calculation Formula

Over Limit (dB) = Emission (dB μ V) – Limit Line (dB μ V)

7.4.3. TEST RESULTS

Model No.	N/A	6dB Bandwidth	N/A
Environmental Conditions	N/A	Test Mode	N/A
Tested by	N/A		

Note: No applicable, the EUT doesn't have tuner port.

7.5. HARMONICS CURRENT MEASUREMENT

7.5.1. LIMITS OF HARMONICS CURRENT MEASUREMENT

Limits for Class A equipment							
Harmonics Order n	Max. permissible harmonics current A						
Od	ld harmonics						
3	2.30						
5	1.14						
7	0.77						
9	0.40						
11	0.33						
13	0.21						
15<=n<=39	0.15x15/n						
Eve	en harmonics						
2	1.08						
4	0.43						
6	0.30						
8<=n<=40	0.23x8/n						

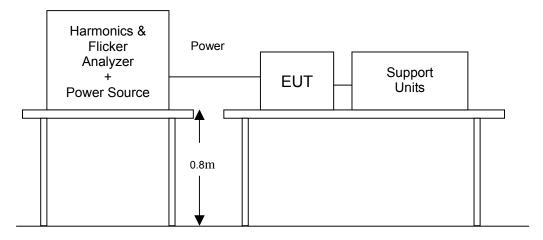
Limits for Class D equipment									
Harmonics Order n	Max. permissible harmonics current per watt mA/W	Max. permissible harmonics current A							
	Odd Harmonics only								
3	3.4	2.30							
5	1.9	1.14							
7	1.0	0.77							
9	0.5	0.40							
11	0.35	0.33							
13	0.30	0.21							
15<=n<=39	3.85/n	0.15x15/n							

NOTE: 1. Class A and Class D are classified according to item 7.5.3.

7.5.2. TEST INSTRUMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
H/F Measurement System	EMC Partner	HAR1000-1P	189	08/12/2016		
5KVA Power Source	Teseq	5001IX-208-TSQ	1207A03643	No Cal. Required		
Digital Power Meter	Protronix	1201	201091	No Cal. Required		
Software	HARCS V4.19					

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

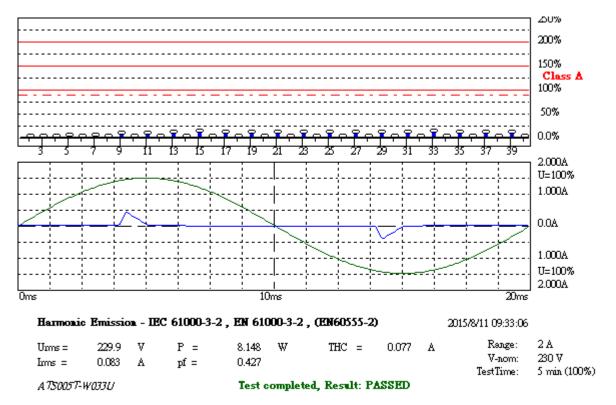

^{2.} According to section 7 of EN 61000-3-2, the above limits for all equipment except for lighting equipment having an active input power > 75 W and no limits apply for equipment with an active input power up to and including 75 W.

7.5.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-029)

- The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn.
- The classification of EUT is according to section 5 of EN 61000-3-2.
- The EUT is classified as follows:
 - Class A: Balanced three-phase equipment, Household appliances excluding equipment as Class D, Tools excluding portable tools, Dimmers for incandescent lamps, audio equipment, equipment not specified in one of the three other classes.
 - Class B: Portable tools; Arc welding equipment which is not professional equipment.
 - Class C: Lighting equipment.
 - Class D: Equipment having a specified power less than or equal to 600 W of the following types: Personal computers and personal computer monitors: television receivers and refrigerators and freezers having one or more variable-speed drives to control compressor motor(s).
- The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the time necessary for the EUT to be exercised.

7.5.4. TEST SETUP

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.


7.5.5. TEST RESULTS

Model: KTPS05-03315U-VI

Power Consumption	8.148W	Test Results	PASS
Environmental Conditions	20°C, 57% RH, 1009mbar	Limits	Class ⊠ A □ B □ C □ D
Test Mode	Operating	Tested by	Frank Liao

NOTE: Limits classified according to item 7.5.1.

Test result of EN 61000-3-2

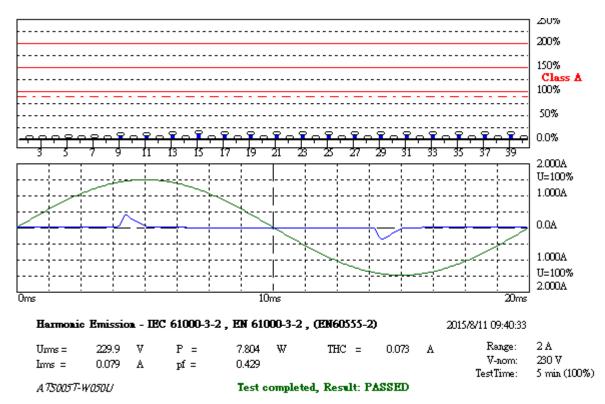
HAR-1000 PMC-Return

Urms = 229.9V Freq = 50.013 Range: 2 A Irms = 0.083A Ipk = 0.432A cf = 5.200 P = 8.148W S = 19.08VA pf = 0.427 THDi = 204 % THDu = 0.10 % Class A

Test - Time : 5min (100 %)

Test completed, Result: PASSED

1 50 0.0375 0.0376 45.294 0.0377 45.441 2 100 0.0000 0.0001 0.1471 0.0113 0.0001 0.1471 0.0113 0.0001 0.1471 0.0130 39.706 1.4330 2.3000 4 200 0.0000 0.0011 0.1471 0.0284 0.0011 0.1471 0.0284 0.4300 5 250 0.0314 0.37794 2.7519 0.0315 3.7941 2.7626 1.1400 6 300 0.0000 0.0001 0.1471 0.0407 0.0002 0.2941 0.0814 0.3000 8 400 0.0266 0.0267 32.206 6.6833 0.0262 0.2941 0.1061 0.2300 9 450 0.0266 0.0267 32.206 6.6833 0.0237 22.652 6.6833 0.0267 22.562 6.6833 0.0267 24.562 7.1763 0.0237 28.529 7.1763 0.3300 1.4300 1.4300 <	Order	Freq. [Hz]	lavg [A]	Irms [A]	Irms% [%]	Irms%L [%]	lmax [A]	lmax% [%]	lmax%L [%]	Limit [A]	Status
3 150 0.0328 0.0328 39.559 1.4277 0.0330 39.706 1.4330 2.3000 4 200 0.0000 0.0001 0.1471 0.0284 0.0001 0.1471 0.0284 0.4300 5 250 0.0314 0.0314 37.794 2.7519 0.0315 37.941 2.7626 1.1400 6 300 0.0000 0.0001 0.1471 0.0407 0.0002 0.2941 0.0844 0.3000 7 350 0.0293 35.294 3.8048 0.0293 35.294 3.8048 0.7700 8 400 0.0000 0.0001 0.1471 0.0531 0.0023 32.206 6.6833 0.0266 32.206 6.6833 0.0267 32.206 6.6833 0.0400 0.0001 0.1471 0.0663 0.0002 0.2941 0.1522 0.1533 13 650 0.0237 28.529 7.1763 0.3300 14 0.1522 0.1533 14 0.1522 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
4 200 0.0000 0.0011 0.1471 0.0284 0.4300 5 250 0.0314 0.0314 37.794 2.7519 0.0315 37.941 2.7626 1.1400 6 300 0.0000 0.0001 0.1471 0.0407 0.0002 0.2941 0.0814 0.3000 7 350 0.0293 35.294 3.8048 0.77700 8 400 0.0000 0.0001 0.1471 0.0631 0.0002 0.2941 0.1061 0.2300 9 450 0.0266 0.0267 32.206 6.6833 0.0002 0.2941 0.1327 0.1840 10 500 0.0000 0.0001 0.1471 0.0663 0.0002 0.2941 0.1327 0.1840 11 550 0.0237 0.255 24.706 9.7656 0.0022 2.2941 0.1532 0.1533 13 650 0.0205 0.24706 9.7656 0.0205 24.706 9.7656 0.2100											
5 250 0.0314 0.0314 37.794 2.7519 0.0315 37.941 2.7666 1.1400 6 300 0.0000 0.0001 0.1471 0.0407 0.0002 0.2941 0.0814 0.3000 7 350 0.0293 35.294 3.8048 0.77700 8 400 0.0000 0.0001 0.1471 0.0531 0.0002 0.2941 0.1061 0.2300 9 450 0.0266 0.0267 32.206 6.6833 0.0267 32.206 6.6833 0.4000 10 500 0.0000 0.0001 0.1471 0.0663 0.002941 0.1327 0.1840 11 550 0.0237 0.2337 28.529 7.1763 0.0237 28.529 7.1763 0.0237 28.529 7.1763 0.0237 28.529 7.1763 0.0237 28.529 7.1763 0.0225 24.706 9.7656 0.2100 0.1533 13 650 0.0205 0.02											
6 300 0.0000 0.0001 0.1471 0.0407 0.0002 0.2941 0.0814 0.3000 7 350 0.0293 0.0293 35.294 3.8048 0.0293 35.294 3.8048 0.7700 8 400 0.0000 0.0001 0.1471 0.0531 0.0002 0.2941 0.1061 0.2300 9 450 0.0266 0.0267 32.206 6.8833 0.0267 32.206 6.6833 0.4000 10 500 0.0000 0.0011 0.1471 0.0663 0.0027 28.529 7.1763 0.3300 12 600 0.0000 0.0001 0.1471 0.0796 0.0002 0.2941 0.1533 13 650 0.0205 0.2706 9.7656 0.0205 24.706 9.7656 0.2100 14 700 0.0000 0.0001 0.1471 0.0929 0.0002 0.2941 0.1838 0.1150 15 750 0.0172											
7 350 0.0293 0.0293 35.294 3.8048 0.0283 35.294 0.1061 0.2300 9 450 0.0266 0.0267 32.206 6.6833 0.0267 32.206 6.6833 0.4000 10 500 0.0000 0.0001 0.1471 0.0663 0.0002 0.2941 0.1327 0.1840 11 550 0.0237 0.0237 28.529 7.1763 0.02237 28.529 7.1763 0.0237 28.529 7.1763 0.0237 28.529 7.1763 0.0237 28.529 7.1763 0.0237 28.529 7.1763 0.0237 28.529 7.1763 0.0237 28.529 7.1763 0.0237 28.529 7.1763 0.0237 28.529 7.1763 0.0237 28.529 7.1763 0.0237 28.529 7.1763 0.0238 0.1560 0.1533 13 650 0.0205 0.24706 9.7656 0.0202 0.2941 0.1858 0.1314 15 750 <											
8 400 0.0000 0.0001 0.1471 0.0531 0.0002 0.2941 0.1661 0.2300 9 450 0.0266 0.0267 32.206 6.6833 0.0007 32.206 6.6833 0.4000 10 500 0.0000 0.0001 0.1471 0.0663 0.0002 2.2941 0.1327 0.1840 11 550 0.0237 0.0237 28.529 7.1763 0.0237 28.529 7.1763 0.0237 28.529 7.1763 0.0237 28.529 7.1763 0.0237 28.706 0.7656 0.2100 0.0000 0.0000 0.0000 0.0000 0.0000 0.2052 24.706 9.7656 0.2100 14 700 0.0000 0.0001 0.1471 0.0929 0.0002 0.2941 0.1858 0.1314 15 750 0.0172 0.0173 20.882 11.556 0.1500 0.1431 0.0144 17.353 10.883 0.0143 0.0144 17.353 10.8											
9 450 0.0266 0.0267 32.206 6.8833 0.0267 32.206 6.8833 0.4000 10 500 0.0000 0.0001 0.1471 0.0663 0.0002 0.2941 0.1327 0.1840 11 550 0.0237 0.0237 28.529 7.1763 0.3300 12 600 0.0000 0.0001 0.1471 0.0796 0.0002 0.2941 0.1592 0.1533 13 650 0.0205 0.2055 24.706 9.7656 0.0205 24.706 9.7656 0.22041 0.1586 0.1314 15 750 0.0172 0.0173 20.882 11.556 0.0173 20.882 11.556 0.0173 20.882 11.556 0.1500 16 800 0.0000 0.0001 0.1471 0.1061 0.0002 0.2941 0.2123 0.1150 17 850 0.0143 0.0143 0.0443 0.01443 0.14471 0.1061 0.0024											
10 500 0.0000 0.0001 0.1471 0.0663 0.0002 0.2941 0.1327 0.1840 11 550 0.0237 0.0237 28.529 7.1763 0.3300 12 600 0.0000 0.0001 0.1471 0.0796 0.0002 0.2941 0.1592 0.1533 13 650 0.0205 0.0205 24.706 9.7656 0.0205 24.706 9.7656 0.2100 14 700 0.0000 0.0001 0.1471 0.0929 0.0002 0.2941 0.1858 0.1314 15 750 0.0172 0.0173 20.882 11.556 0.0173 20.882 11.556 0.1500 16 800 0.0000 0.0001 0.1471 0.1061 0.0002 0.2941 0.2123 0.1150 17 850 0.0143 0.0144 17.353 10.883 0.0144 17.353 10.883 0.0144 17.353 10.883 0.0144 17.353 10			0.0000		0.1471				0.1061	0.2300	
11 550 0.0237 0.0237 28.529 7.1763 0.0237 28.529 7.1763 0.3300 12 600 0.0000 0.0001 0.1471 0.0766 0.0002 0.2941 0.1592 0.1533 13 650 0.0205 24.706 9.7656 0.0205 24.706 9.7656 0.2055 24.706 9.7656 0.2005 24.706 9.7656 0.2020 0.002 0.2941 0.1858 0.1314 15 750 0.0172 0.0173 20.882 11.556 0.1500 0.000 0.0000 0.0001 0.1471 0.1061 0.0002 0.2941 0.2123 0.1150 17 850 0.0143 0.0144 17.353 10.883 0.0002 0.2941 0.2388 0.1022 18 900 0.0000 0.0002 0.2941 0.2388 0.0002 0.2941 0.2388 0.1022 19 950 0.0118 0.0118 0.0182 0.9989 0.0118											
12 600 0.0001 0.1471 0.0796 0.0002 0.2941 0.1592 0.1533 13 650 0.0205 0.0205 2.4706 9.7656 0.2100 14 700 0.0000 0.0001 0.1471 0.0929 0.0002 0.2941 0.1858 0.1314 15 750 0.0172 0.0173 20.882 11.556 0.0173 20.882 11.556 0.1500 16 800 0.0000 0.0001 0.1471 0.1061 0.0002 0.2941 0.2123 0.1150 17 850 0.0143 0.0144 17.353 10.883 0.0144 17.353 10.883 0.1022 18 900 0.0000 0.0002 0.2941 0.2388 0.0002 0.2941 0.2388 0.0022 0.2941 0.2388 0.0122 19 950 0.0118 14.265 9.9889 0.0118 14.265 9.9889 0.1184 20 1000 0.0000											
13 650 0.0205 0.0205 24.706 9.7656 0.0205 24.706 9.7656 0.2100 14 700 0.0000 0.0001 0.1471 0.0929 0.0002 0.2941 0.1858 0.1314 15 750 0.0172 0.0173 20.882 11.556 0.0173 20.882 11.556 0.1500 16 800 0.0000 0.0001 0.1471 0.1061 0.0002 0.2941 0.2123 0.1150 17 850 0.0143 0.0144 17.353 10.883 0.0144 17.353 10.883 0.0122 2941 0.2388 0.1022 19 950 0.0118 0.0118 14.265 9.9989 0.0118 14.265 9.9989 0.0118 14.265 9.9989 0.0118 14.265 9.9989 0.0118 14.265 9.9989 0.0118 14.265 9.9989 0.0118 14.265 9.9989 0.0118 14.265 9.9989 0.0118 14.265 9.99					28.529				7.1763	0.3300	
14 700 0.0000 0.0001 0.1471 0.0929 0.0002 0.2941 0.1858 0.1314 15 750 0.0172 0.0173 20.882 11.556 0.0173 20.882 11.556 0.1500 16 800 0.0000 0.0001 0.1471 0.1061 0.0002 0.2941 0.2123 0.1150 17 850 0.0143 0.0144 17.353 10.883 0.0144 17.353 10.883 0.1324 18 900 0.0000 0.0002 0.2941 0.2388 0.0002 0.2941 0.2388 0.1022 19 950 0.0118 0.0118 14.265 9.9989 0.0118 14.265 9.9989 0.0118 14.265 9.9989 0.0118 14.265 9.9989 0.0118 14.265 9.9989 0.0110 12.059 9.3424 0.0100 1.2059 9.3424 0.0100 1.2059 9.3424 0.0100 1.0259 9.3424 0.0101 1.050 0.0					0.1471				0.1592	0.1533	
15 750 0.0172 0.0173 20.882 11.556 0.0173 20.882 11.556 0.1500 16 800 0.0000 0.0001 0.1471 0.1061 0.0002 0.2941 0.2123 0.1150 17 850 0.0143 0.0144 17.353 10.883 0.0144 17.353 10.883 0.1324 18 900 0.0000 0.0002 0.2941 0.2388 0.0002 0.2941 0.2388 0.1022 19 950 0.0118 0.0118 14.265 9.9989 0.0118 14.265 9.9989 0.0118 14.265 9.9989 0.1184 20 1000 0.0000 0.0002 0.2941 0.2654 0.0002 0.2941 0.2654 0.0002 0.2941 0.0101 12.059 9.3424 0.1071 21 1050 0.0099 0.0100 12.059 9.3424 0.1071 0.04412 0.4379 0.0836 23 1150 0.0088 <t< td=""><td></td><td>650</td><td>0.0205</td><td>0.0205</td><td>24.706</td><td>9.7656</td><td>0.0205</td><td>24.706</td><td>9.7656</td><td>0.2100</td><td></td></t<>		650	0.0205	0.0205	24.706	9.7656	0.0205	24.706	9.7656	0.2100	
16 800 0.0000 0.0001 0.1471 0.1061 0.0002 0.2941 0.2123 0.1150 17 850 0.0143 0.0144 17.353 10.883 0.0144 17.353 10.883 0.1324 18 900 0.0000 0.0002 0.2941 0.2388 0.0002 0.2941 0.2388 0.1022 19 950 0.0118 0.0118 14.265 9.989 0.0118 14.265 9.9989 0.1184 0.2654 0.002 0.2941 0.2654 0.0002 0.2941 0.2654 0.0002 0.2941 0.2654 0.0002 0.2941 0.0100 12.059 9.3424 0.0100 12.059 9.3424 0.0100 12.059 9.3424 0.0100 12.059 9.3424 0.0100 12.059 9.3424 0.0100 12.059 9.3424 0.01071 0.0383 0.0000 0.0002 0.2941 0.2919 0.0004 0.4412 0.4379 0.0836 23 1150 0.0082		700	0.0000	0.0001	0.1471	0.0929	0.0002	0.2941	0.1858	0.1314	
17 850 0.0143 0.0144 17.353 10.883 0.0144 17.353 10.883 0.1324 18 900 0.0000 0.0002 0.2941 0.2388 0.0002 0.2941 0.2388 0.1022 19 950 0.0118 14.265 9.9989 0.0118 14.265 9.9989 0.1184 20 1000 0.0000 0.0002 0.2941 0.2654 0.0020 0.2941 0.2654 0.0920 21 1050 0.0099 0.0100 12.059 9.3424 0.0100 12.059 9.3424 0.1071 22 1100 0.0000 0.0002 0.2941 0.2919 0.0004 0.4412 0.4379 0.0836 23 1150 0.0088 0.0088 10.588 8.9844 0.0089 10.735 9.1092 0.0978 24 1200 0.0000 0.0082 0.0831 10.000 9.2231 0.0076 0.0767 25 1250 0.0082 </td <td>15</td> <td>750</td> <td>0.0172</td> <td>0.0173</td> <td>20.882</td> <td>11.556</td> <td>0.0173</td> <td>20.882</td> <td>11.556</td> <td>0.1500</td> <td></td>	15	750	0.0172	0.0173	20.882	11.556	0.0173	20.882	11.556	0.1500	
17 850 0.0143 0.0144 17.353 10.883 0.0144 17.353 10.883 0.1324 18 900 0.0000 0.0002 0.2941 0.2388 0.0002 0.2941 0.2388 0.1022 19 950 0.0118 14.265 9.9989 0.0118 14.265 9.9989 0.1184 20 1000 0.0000 0.0002 0.2941 0.2654 0.0020 0.2941 0.2654 0.0920 21 1050 0.0099 0.0100 12.059 9.3424 0.0100 12.059 9.3424 0.1071 22 1100 0.0000 0.0002 0.2941 0.2919 0.0004 0.4412 0.4379 0.0836 23 1150 0.0088 0.0088 10.588 8.9844 0.0089 10.735 9.1092 0.0978 24 1200 0.0000 0.0082 0.0831 10.000 9.2231 0.0076 0.0767 25 1250 0.0082 </td <td>16</td> <td>800</td> <td>0.0000</td> <td>0.0001</td> <td>0.1471</td> <td>0.1061</td> <td>0.0002</td> <td>0.2941</td> <td>0.2123</td> <td>0.1150</td> <td></td>	16	800	0.0000	0.0001	0.1471	0.1061	0.0002	0.2941	0.2123	0.1150	
18 900 0.0000 0.0002 0.2941 0.2388 0.0002 0.2941 0.2388 0.1022 19 950 0.0118 0.0118 14.265 9.9989 0.0118 14.265 9.9989 0.1184 20 1000 0.0000 0.0002 0.2941 0.2654 0.0002 0.2941 0.2654 0.0002 0.2941 0.02654 0.0002 0.2941 0.0100 12.059 9.3424 0.1071 21 1050 0.0000 0.0002 0.2941 0.2919 0.0004 0.4412 0.4379 0.0836 23 1150 0.0088 0.0088 10.588 8.9844 0.0089 10.735 9.1092 0.0978 24 1200 0.0000 0.0002 0.2941 0.3184 0.0004 0.4412 0.4777 0.0767 25 1250 0.0082 0.0083 10.000 9.2231 0.000 9.2231 0.000 26 1300 0.0080 0.0082 <		850	0.0143	0.0144	17.353	10.883	0.0144	17.353	10.883	0.1324	
20 1000 0.0000 0.0002 0.2941 0.2654 0.0002 0.2941 0.2654 0.0920 21 1050 0.0099 0.0100 12.059 9.3424 0.0100 12.059 9.3424 0.1071 22 1100 0.0000 0.0002 0.2941 0.2919 0.0004 0.4412 0.4379 0.0836 23 1150 0.0088 0.0088 10.588 8.9844 0.0089 10.735 9.1092 0.0978 24 1200 0.0000 0.0002 0.2941 0.3184 0.0004 0.4412 0.4777 0.0767 25 1250 0.0082 0.0833 10.000 9.2231 0.0003 10.000 9.2231 0.0900 26 1300 0.0000 0.0004 0.4412 0.5175 0.0004 0.4412 0.5175 0.0708 27 1350 0.0080 0.0082 9.8529 9.8145 0.0082 9.8529 9.8145 0.0833 <td< td=""><td>18</td><td></td><td>0.0000</td><td>0.0002</td><td>0.2941</td><td>0.2388</td><td>0.0002</td><td>0.2941</td><td>0.2388</td><td>0.1022</td><td></td></td<>	18		0.0000	0.0002	0.2941	0.2388	0.0002	0.2941	0.2388	0.1022	
20 1000 0.0000 0.0002 0.2941 0.2654 0.0002 0.2941 0.2654 0.0920 21 1050 0.0099 0.0100 12.059 9.3424 0.0100 12.059 9.3424 0.1071 22 1100 0.0000 0.0002 0.2941 0.2919 0.0004 0.4412 0.4379 0.0836 23 1150 0.0088 0.0088 10.588 8.9844 0.0089 10.735 9.1092 0.0978 24 1200 0.0000 0.0002 0.2941 0.3184 0.0004 0.4412 0.4777 0.0767 25 1250 0.0082 0.0833 10.000 9.2231 0.0003 10.000 9.2231 0.0900 26 1300 0.0000 0.0004 0.4412 0.5175 0.0004 0.4412 0.5175 0.0708 27 1350 0.0080 0.0082 9.8529 9.8145 0.0082 9.8529 9.8145 0.0833 <td< td=""><td>19</td><td>950</td><td>0.0118</td><td>0.0118</td><td>14.265</td><td>9.9989</td><td>0.0118</td><td>14.265</td><td>9.9989</td><td>0.1184</td><td></td></td<>	19	950	0.0118	0.0118	14.265	9.9989	0.0118	14.265	9.9989	0.1184	
21 1050 0.0099 0.0100 12.059 9.3424 0.0100 12.059 9.3424 0.1071 22 1100 0.0000 0.0002 0.2941 0.2919 0.0004 0.4412 0.4379 0.0836 23 1150 0.0088 0.0088 10.588 8.9844 0.0089 10.735 9.1092 0.0978 24 1200 0.0000 0.0002 0.2941 0.3184 0.0004 0.4412 0.4777 0.0767 25 1250 0.0082 0.0083 10.000 9.2231 0.0000 9.2231 0.0900 26 1300 0.0000 0.0044 0.4412 0.5175 0.0708 27 1350 0.0080 0.0082 9.8529 9.8145 0.0082 9.8529 9.8145 0.0833 28 1400 0.0000 0.0044 0.4412 0.5573 0.0005 0.5882 0.7430 0.0657 29 1450 0.0080 0.0081 9.7059 10.384 0.0081 9.7059 10.384 0.001 0.013 <		1000	0.0000	0.0002	0.2941	0.2654		0.2941	0.2654	0.0920	
22 1100 0.0000 0.0002 0.2941 0.2919 0.0004 0.4412 0.4379 0.0836 23 1150 0.0088 0.0088 10.588 8.9844 0.0089 10.735 9.1092 0.0978 24 1200 0.0000 0.0002 0.2941 0.3184 0.0004 0.4412 0.4777 0.0767 25 1250 0.0082 0.0083 10.000 9.2231 0.0900 26 1300 0.0000 0.0004 0.4412 0.5175 0.0004 0.4412 0.5175 0.0708 27 1350 0.0080 0.0082 9.8529 9.8145 0.0082 9.8529 9.8145 0.083 28 1400 0.0000 0.0084 0.4412 0.5573 0.0005 0.5882 0.7430 0.0657 29 1450 0.0080 0.0084 9.7059 10.384 0.0081 9.7059 10.384 0.0076 10.384 0.07961 0.0613 <td< td=""><td></td><td>1050</td><td>0.0099</td><td>0.0100</td><td>12.059</td><td></td><td>0.0100</td><td>12.059</td><td>9.3424</td><td>0.1071</td><td></td></td<>		1050	0.0099	0.0100	12.059		0.0100	12.059	9.3424	0.1071	
23 1150 0.0088 0.0088 10.588 8.9844 0.0089 10.735 9.1092 0.0978 24 1200 0.0000 0.0002 0.2941 0.3184 0.0004 0.4412 0.4777 0.0767 25 1250 0.0082 0.0083 10.000 9.2231 0.0900 26 1300 0.0000 0.0004 0.4412 0.5175 0.0004 0.4412 0.5175 0.0708 27 1350 0.0080 0.0082 9.8529 9.8145 0.0082 9.8529 9.8145 0.0833 28 1400 0.0000 0.0004 0.4412 0.5573 0.0005 0.5882 0.7430 0.0657 29 1450 0.0080 0.0081 9.7059 10.384 0.0081 9.7059 10.384 0.0776 30 1500 0.0000 0.0004 0.4412 0.5971 0.0005 0.5882 0.7961 0.0613 31 1550 0.0078 0.007		1100	0.0000	0.0002	0.2941		0.0004	0.4412	0.4379	0.0836	
24 1200 0.0000 0.0002 0.2941 0.3184 0.0004 0.4412 0.4777 0.0767 25 1250 0.0082 0.0083 10.000 9.2231 0.0900 26 1300 0.0000 0.0004 0.4412 0.5175 0.0004 0.4412 0.5175 0.0708 27 1350 0.0080 0.0082 9.8529 9.8145 0.0082 9.8529 9.8145 0.0083 28 1400 0.0000 0.0004 0.4412 0.5573 0.0005 0.5882 0.7430 0.0657 29 1450 0.0080 0.0081 9.7059 10.384 0.0081 9.7059 10.384 0.0076 30 1500 0.0000 0.0004 0.4412 0.5971 0.0005 0.5882 0.7961 0.0613 31 1550 0.0078 0.0079 9.5588 10.932 0.0079 9.5588 10.932 0.0726 32 1600 0.0074 0.007											
25 1250 0.0082 0.0083 10.000 9.2231 0.0083 10.000 9.2231 0.0900 26 1300 0.0000 0.0004 0.4412 0.5175 0.0004 0.4412 0.5175 0.0708 27 1350 0.0080 0.0082 9.8529 9.8145 0.0082 9.8529 9.8145 0.0833 28 1400 0.0000 0.0004 0.4412 0.5573 0.0005 0.5882 0.7430 0.0657 29 1450 0.0080 0.0081 9.7059 10.384 0.0081 9.7059 10.384 0.0081 9.7059 10.384 0.0076 0.5882 0.7961 0.0613 31 1500 0.0078 0.0079 9.5588 10.932 0.0079 9.5588 10.932 0.0726 32 1600 0.0000 0.0005 0.5882 0.8492 0.0005 0.5882 0.8492 0.0575 33 1650 0.0074 0.0076 9.1176 11.100 0.0076 9.1176 11.100 0.0682 34 1		1200	0.0000	0.0002	0.2941	0.3184	0.0004	0.4412	0.4777	0.0767	
26 1300 0.0000 0.0004 0.4412 0.5175 0.0004 0.4412 0.5175 0.0708 27 1350 0.0080 0.0082 9.8529 9.8145 0.0082 9.8529 9.8145 0.0833 28 1400 0.0000 0.0004 0.4412 0.5573 0.0005 0.5882 0.7430 0.0657 29 1450 0.0080 0.0081 9.7059 10.384 0.0081 9.7059 10.384 0.0776 30 1500 0.0000 0.0004 0.4412 0.5971 0.0005 0.5882 0.7961 0.0613 31 1550 0.0078 0.0079 9.5588 10.932 0.0079 9.5588 10.932 0.0726 32 1600 0.0000 0.0005 0.5882 0.8492 0.005 0.5882 0.8492 0.0575 33 1650 0.0074 0.0076 9.1176 11.100 0.0076 9.1176 11.100 0.0682 34 1700 0.0000 0.0005 0.5882 0.9023 0.0066 0.73		1250	0.0082	0.0083	10.000	9.2231	0.0083	10.000	9.2231	0.0900	
27 1350 0.0080 0.0082 9.8529 9.8145 0.0082 9.8529 9.8145 0.00833 28 1400 0.0000 0.0004 0.4412 0.5573 0.0005 0.5882 0.7430 0.0657 29 1450 0.0080 0.0081 9.7059 10.384 0.0081 9.7059 10.384 0.0776 30 1500 0.0000 0.0004 0.4412 0.5971 0.0005 0.5882 0.7961 0.0613 31 1550 0.0078 0.0079 9.5588 10.932 0.0079 9.5588 10.932 0.0726 32 1600 0.0000 0.0005 0.5882 0.8492 0.0055 0.5882 0.8492 0.0575 33 1650 0.0074 0.0076 9.1176 11.100 0.0076 9.1176 11.100 0.0682 34 1700 0.0000 0.0005 0.5882 0.9023 0.0066 0.7353 1.1278 0.0541 35 1750 0.0070 0.0071 8.5294 11.013 0.0072 8.		1300	0.0000	0.0004	0.4412		0.0004	0.4412	0.5175	0.0708	
28 1400 0.0000 0.0004 0.4412 0.5573 0.0005 0.5882 0.7430 0.0657 29 1450 0.0080 0.0081 9.7059 10.384 0.0081 9.7059 10.384 0.0776 30 1500 0.0000 0.0004 0.4412 0.5971 0.0005 0.5882 0.7961 0.0613 31 1550 0.0078 0.0079 9.5588 10.932 0.0079 9.5588 10.932 0.0726 32 1600 0.0000 0.0005 0.5882 0.8492 0.0005 0.5882 0.8492 0.0575 33 1650 0.0074 0.0076 9.1176 11.100 0.0076 9.1176 11.100 0.0682 34 1700 0.0000 0.0005 0.5882 0.9023 0.0006 0.7353 1.1278 0.0541 35 1750 0.0070 0.0071 8.5294 11.013 0.0072 8.6765 11.203 0.0643 36 1800 0.0064 0.0066 7.9412 10.840 0.0066 7.9											
29 1450 0.0080 0.0081 9.7059 10.384 0.0081 9.7059 10.384 0.0776 30 1500 0.0000 0.0004 0.4412 0.5971 0.0005 0.5882 0.7961 0.0613 31 1550 0.0078 0.0079 9.5588 10.932 0.0079 9.5588 10.932 0.0726 32 1600 0.0000 0.0005 0.5882 0.8492 0.0005 0.5882 0.8492 0.0575 33 1650 0.0074 0.0076 9.1176 11.100 0.0076 9.1176 11.100 0.0682 34 1700 0.0000 0.0005 0.5882 0.9023 0.0006 0.7353 1.1278 0.0541 35 1750 0.0070 0.0071 8.5294 11.013 0.0072 8.6765 11.203 0.0643 36 1800 0.0064 0.0066 7.9412 10.840 0.0066 7.9412 10.840 0.066 7.9412 10.840 0.066 7.9412 10.840 0.0608 38 190			0.0000	0.0004	0.4412		0.0005		0.7430	0.0657	
30 1500 0.0000 0.0004 0.4412 0.5971 0.0005 0.5882 0.7961 0.0613 31 1550 0.0078 0.0079 9.5588 10.932 0.0079 9.5588 10.932 0.0726 32 1600 0.0000 0.0005 0.5882 0.8492 0.0005 0.5882 0.8492 0.0575 33 1650 0.0074 0.0076 9.1176 11.100 0.0076 9.1176 11.100 0.0682 34 1700 0.0000 0.0005 0.5882 0.9023 0.0006 0.7353 1.1278 0.0541 35 1750 0.0070 0.0071 8.5294 11.013 0.0072 8.6765 11.203 0.0643 36 1800 0.0000 0.0005 0.5882 0.9553 0.0006 0.7353 1.1942 0.0511 37 1850 0.0064 0.0066 7.9412 10.840 0.0066 7.9412 10.840 0.0668 38 1900 0.0058 0.0060 7.2059 10.368 0.0060 7.2											
31 1550 0.0078 0.0079 9.5588 10.932 0.0079 9.5588 10.932 0.0726 32 1600 0.0000 0.0005 0.5882 0.8492 0.0005 0.5882 0.8492 0.0575 33 1650 0.0074 0.0076 9.1176 11.100 0.0076 9.1176 11.100 0.0682 34 1700 0.0000 0.0005 0.5882 0.9023 0.0006 0.7353 1.1278 0.0541 35 1750 0.0070 0.0071 8.5294 11.013 0.0072 8.6765 11.203 0.0643 36 1800 0.0000 0.0005 0.5882 0.9553 0.0006 0.7353 1.1942 0.0511 37 1850 0.0064 0.0066 7.9412 10.840 0.0066 7.9412 10.840 0.0608 38 1900 0.0000 0.0005 0.5882 1.0084 0.0066 7.2059 10.368 0.0060 7.2059 10.368 0.0060 7.2059 10.368 0.0060 7.2059 10.368	30										
32 1600 0.0000 0.0005 0.5882 0.8492 0.0005 0.5882 0.8492 0.0575 33 1650 0.0074 0.0076 9.1176 11.100 0.0076 9.1176 11.100 0.0682 34 1700 0.0000 0.0005 0.5882 0.9023 0.0006 0.7353 1.1278 0.0541 35 1750 0.0070 0.0071 8.5294 11.013 0.0072 8.6765 11.203 0.0643 36 1800 0.0000 0.0005 0.5882 0.9553 0.0006 0.7353 1.1942 0.0511 37 1850 0.0064 0.0066 7.9412 10.840 0.0066 7.9412 10.840 0.0608 38 1900 0.0000 0.0005 0.5882 1.0084 0.0006 0.7353 1.2605 0.0484 39 1950 0.0058 0.0060 7.2059 10.368 0.0060 7.2059 10.368 0.0060 7.2059 10.368 0.0060 7.2059 10.368 0.0060											
33 1650 0.0074 0.0076 9.1176 11.100 0.0076 9.1176 11.100 0.0682 34 1700 0.0000 0.0005 0.5882 0.9023 0.0006 0.7353 1.1278 0.0541 35 1750 0.0070 0.0071 8.5294 11.013 0.0072 8.6765 11.203 0.0643 36 1800 0.0000 0.0005 0.5882 0.9553 0.0006 0.7353 1.1942 0.0511 37 1850 0.0064 0.0066 7.9412 10.840 0.0066 7.9412 10.840 0.0608 38 1900 0.0000 0.0005 0.5882 1.0084 0.0006 0.7353 1.2605 0.0484 39 1950 0.0058 0.0060 7.2059 10.368 0.0060 7.2059 10.368 0.0060 7.2059 10.368 0.0075											
34 1700 0.0000 0.0005 0.5882 0.9023 0.0006 0.7353 1.1278 0.0541 35 1750 0.0070 0.0071 8.5294 11.013 0.0072 8.6765 11.203 0.0643 36 1800 0.0000 0.0005 0.5882 0.9553 0.0006 0.7353 1.1942 0.0511 37 1850 0.0064 0.0066 7.9412 10.840 0.0066 7.9412 10.840 0.0608 38 1900 0.0000 0.0005 0.5882 1.0084 0.0006 0.7353 1.2605 0.0484 39 1950 0.0058 0.0060 7.2059 10.368 0.0060 7.2059 10.368 0.0060 7.2059 10.368 0.0077			0.0074		9.1176		0.0076		11.100	0.0682	
35 1750 0.0070 0.0071 8.5294 11.013 0.0072 8.6765 11.203 0.0643 36 1800 0.0000 0.0005 0.5882 0.9553 0.0006 0.7353 1.1942 0.0511 37 1850 0.0064 0.0066 7.9412 10.840 0.0066 7.9412 10.840 0.0608 38 1900 0.0000 0.0005 0.5882 1.0084 0.0006 0.7353 1.2605 0.0484 39 1950 0.0058 0.0060 7.2059 10.368 0.0060 7.2059 10.368 0.0060											
36 1800 0.0000 0.0005 0.5882 0.9553 0.0006 0.7353 1.1942 0.0511 37 1850 0.0064 0.0066 7.9412 10.840 0.0066 7.9412 10.840 0.0608 38 1900 0.0000 0.0005 0.5882 1.0084 0.0006 0.7353 1.2605 0.0484 39 1950 0.0058 0.0060 7.2059 10.368 0.0060 7.2059 10.368 0.0057										0.0643	
37 1850 0.0064 0.0066 7.9412 10.840 0.0066 7.9412 10.840 0.0608 38 1900 0.0000 0.0005 0.5882 1.0084 0.0006 0.7353 1.2605 0.0484 39 1950 0.0058 0.0060 7.2059 10.368 0.0060 7.2059 10.368 0.0577											
38											
39 1950 0.0058 0.0060 7.2059 10.368 0.0060 7.2059 10.368 0.0577											



Model: KTPS05-05010U-VI

Power Consumption	7.804W	Test Results	PASS
Environmental Conditions	20°C, 57% RH, 1009mbar	Limits	Class ⊠ A □ B □ C □ D
Test Mode	Operating	Tested by	Frank Liao

NOTE: Limits classified according to item 7.5.1.

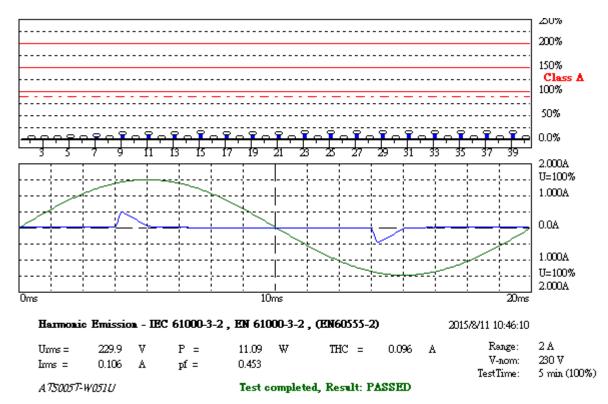
Test result of EN 61000-3-2

HAR-1000 PMC-Partner

Test - Time : 5min (100 %)

Test completed, Result: PASSED

Order	Freq. [Hz]	lavg [A]	Irms [A]	Irms% [%]	Irms%L [%]	Imax [A]	Imax% [%]	Imax%L [%]	Limit [A]	Status
1	50	0.0360	0.0360	45.525		0.0365	46.142			
2	100	0.0000	0.0001	0.1543	0.0113	0.0001	0.1543	0.0113	1.0800	
3	150	0.0314	0.0313	39.506	1.3587	0.0317	40.123	1.3799	2.3000	
4	200	0.0000	0.0001	0.1543	0.0284	0.0001	0.1543	0.0284	0.4300	
5	250	0.0300	0.0298	37.654	2.6127	0.0303	38.272	2.6556	1.1400	
6	300	0.0000	0.0001	0.1543	0.0407	0.0002	0.3086	0.0814	0.3000	
7	350	0.0280	0.0278	35.185	3.6145	0.0282	35.648	3.6621	0.7700	
8	400	0.0000	0.0001	0.1543	0.0531	0.0002	0.3086	0.1061	0.2300	
9	450	0.0255	0.0254	32.099	6.3477	0.0256	32.407	6.4087	0.4000	
10	500	0.0000	0.0001	0.1543	0.0663	0.0002	0.3086	0.1327	0.1840	
11	550	0.0226	0.0226	28.549	6.8433	0.0227	28.704	6.8803	0.3300	
12	600	0.0000	0.0001	0.1543	0.0796	0.0002	0.3086	0.1592	0.1533	
13	650	0.0195	0.0195	24.691	9.3006	0.0195	24.691	9.3006	0.2100	
14	700	0.0000	0.0001	0.1543	0.0929	0.0004	0.4630	0.2786	0.1314	
15	750	0.0165	0.0165	20.833	10.986	0.0166	20.988	11.068	0.1500	
16	800	0.0000	0.0001	0.1543	0.1061	0.0004	0.4630	0.3184	0.1150	
17	850	0.0136	0.0137	17.284	10.330	0.0138	17.438	10.422	0.1324	
18	900	0.0000	0.0002	0.3086	0.2388	0.0004	0.4630	0.3582	0.1022	
19	950	0.0112	0.0114	14.352	9.5866	0.0114	14.352	9.5866	0.1184	
20	1000	0.0000	0.0002	0.3086	0.2654	0.0004	0.4630	0.3981	0.0920	
21	1050	0.0094	0.0095	12.037	8.8867	0.0095	12.037	8.8867	0.1071	
22	1100	0.0000	0.0002	0.3086	0.2919	0.0004	0.4630	0.4379	0.0836	
23	1150	0.0082	0.0084	10.648	8.6100	0.0084	10.648	8.6100	0.0978	
24	1200	0.0000	0.0002	0.3086	0.3184	0.0004	0.4630	0.4777	0.0767	
25	1250	0.0077	0.0078	9.8765	8.6806	0.0078	9.8765	8.6806	0.0900	
26	1300	0.0000	0.0002	0.3086	0.3450	0.0004	0.4630	0.5175	0.0708	
27	1350	0.0075	0.0076	9.5679	9.0820	0.0076	9.5679	9.0820	0.0833	
28	1400	0.0000	0.0004	0.4630	0.5573	0.0004	0.4630	0.5573	0.0657	
29	1450	0.0074	0.0076	9.5679	9.7548	0.0076	9.5679	9.7548	0.0776	
30	1500	0.0000	0.0004	0.4630	0.5971	0.0004	0.4630	0.5971	0.0613	
31	1550	0.0072	0.0073	9.2593	10.091	0.0073	9.2593	10.091	0.0726	
32	1600	0.0000	0.0004	0.4630	0.6369	0.0005	0.6173	0.8492	0.0575	
33	1650	0.0069	0.0071	8.9506	10.384	0.0071	8.9506	10.384	0.0682	
34	1700	0.0000	0.0005	0.6173	0.9023	0.0005	0.6173	0.9023	0.0541	
35	1750	0.0064	0.0066	8.3333	10.254	0.0066	8.3333	10.254	0.0643	
36	1800	0.0000	0.0005	0.6173	0.9553	0.0005	0.6173	0.9553	0.0511	
37	1850	0.0059	0.0061	7.7160	10.037	0.0061	7.7160	10.037	0.0608	
38	1900	0.0000	0.0005	0.6173	1.0084	0.0005	0.6173	1.0084	0.0484	
39	1950	0.0053	0.0055	6.9444	9.5215	0.0055	6.9444	9.5215	0.0577	
40	2000	0.0000	0.0005	0.6173	1.0615	0.0006	0.7716	1.3269	0.0460	
.0	2000	3.0000	0.0000	3.5 . 7 6	1.0010	3.0000	3.7710	1.0200	0.0400	



Model: KTPS05-05015U-VI

Power Consumption	11.09W	Test Results	PASS
Environmental Conditions	20°C, 57% RH, 1009mbar	Limits	Class ⊠ A □ B □ C □ D
Test Mode	Operating	Tested by	Frank Liao

NOTE: Limits classified according to item 7.5.1.

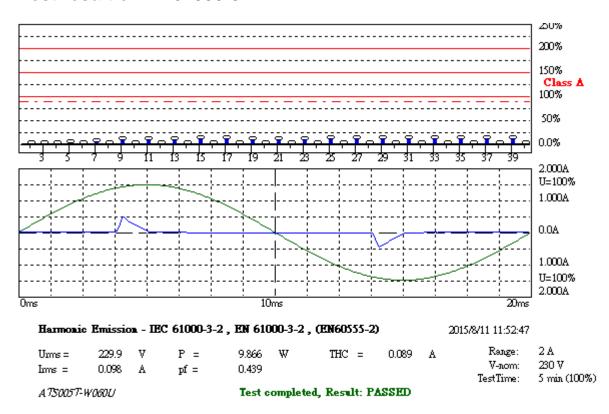
Test result of EN 61000-3-2

HAR-1000 PMC-Partner

Test - Time : 5min (100 %)

Test completed, Result: PASSED

Order	Freq. [Hz]	lavg [A]	Irms [A]	Irms% [%]	Irms%L [%]	lmax [A]	Imax% [%]	lmax%L [%]	Limit [A]	Status
1	50	0.0510	0.0511	48.050		0.0514	48.280			
2	100	0.0000	0.0001	0.1147	0.0113	0.0001	0.1147	0.0113	1.0800	
3	150	0.0454	0.0454	42.661	1.9744	0.0455	42.775	1.9797	2.3000	
4	200	0.0000	0.0001	0.1147	0.0284	0.0001	0.1147	0.0284	0.4300	
5	250	0.0425	0.0424	39.794	3.7156	0.0426	40.023	3.7371	1.1400	
6	300	0.0000	0.0002	0.2294	0.0814	0.0002	0.2294	0.0814	0.3000	
7	350	0.0383	0.0383	36.009	4.9779	0.0383	36.009	4.9779	0.7700	
8	400	0.0000	0.0002	0.2294	0.1061	0.0002	0.2294	0.1061	0.2300	
9	450	0.0332	0.0332	31.193	8.3008	0.0332	31.193	8.3008	0.4000	
10	500	0.0000	0.0002	0.2294	0.1327	0.0002	0.2294	0.1327	0.1840	
11	550	0.0277	0.0277	26.032	8.3970	0.0277	26.032	8.3970	0.3300	
12	600	0.0000	0.0002	0.2294	0.1592	0.0004	0.3440	0.2388	0.1533	
13	650	0.0223	0.0223	20.986	10.638	0.0223	20.986	10.638	0.2100	
14	700	0.0000	0.0002	0.2294	0.1858	0.0004	0.3440	0.2786	0.1314	
15	750	0.0175	0.0176	16.514	11.719	0.0176	16.514	11.719	0.1500	
16	800	0.0000	0.0002	0.2294	0.2123	0.0002	0.2294	0.2123	0.1150	
17	850	0.0140	0.0140	13.188	10.607	0.0140	13.188	10.607	0.1324	
18	900	0.0000	0.0002	0.2294	0.2388	0.0004	0.3440	0.3582	0.1022	
19	950	0.0119	0.0118	11.124	9.9989	0.0120	11.239	10.102	0.1184	
20	1000	0.0000	0.0002	0.2294	0.2654	0.0004	0.3440	0.3981	0.0920	
21	1050	0.0111	0.0111	10.436	10.368	0.0112	10.550	10.482	0.1071	
22	1100	0.0000	0.0002	0.2294	0.2919	0.0004	0.3440	0.4379	0.0836	
23	1150	0.0109	0.0110	10.321	11.230	0.0110	10.321	11.230	0.0978	
24	1200	0.0000	0.0004	0.3440	0.4777	0.0004	0.3440	0.4777	0.0767	
25	1250	0.0108	0.0109	10.206	12.071	0.0109	10.206	12.071	0.0900	
26	1300	0.0000	0.0004	0.3440	0.5175	0.0004	0.3440	0.5175	0.0708	
27	1350	0.0104	0.0105	9.8624	12.598	0.0105	9.8624	12.598	0.0833	
28	1400	0.0000	0.0004	0.3440	0.5573	0.0005	0.4587	0.7430	0.0657	
29	1450	0.0097	0.0098	9.1743	12.587	0.0098	9.1743	12.587	0.0776	
30	1500	0.0000	0.0005	0.4587	0.7961	0.0005	0.4587	0.7961	0.0613	
31	1550	0.0088	0.0089	8.3716	12.278	0.0089	8.3716	12.278	0.0726	
32	1600	0.0000	0.0005	0.4587	0.8492	0.0006	0.5734	1.0615	0.0575	
33	1650	0.0080	0.0081	7.5688	11.816	0.0082	7.6835	11.995	0.0682	
34	1700	0.0000	0.0006	0.5734	1.1278	0.0006	0.5734	1.1278	0.0541	
35	1750	0.0074	0.0074	6.9954	11.583	0.0076	7.1101	11.773	0.0643	
36	1800	0.0000	0.0006	0.5734	1.1942	0.0007	0.6881	1.4330	0.0511	
37	1850	0.0071	0.0072	6.7661	11.844	0.0073	6.8807	12.044	0.0608	
38	1900	0.0000	0.0072	0.6881	1.5126	0.0073	0.8028	1.7647	0.0484	
39	1950	0.0069	0.0071	6.6514	12.272	0.0072	6.7661	12.484	0.0577	
40	2000	0.0009	0.0071	0.8028	1.8576	0.0072	0.8028	1.8576	0.0377	
- 0	2000	0.0000	0.0000	0.0020	1.0070	0.0000	0.0020	1.0070	J.U 7 UU	



Model: KTPS05-06012U-VI

Power Consumption	9.866W	Test Results	PASS
Environmental Conditions	20°C, 57% RH, 1009mbar	Limits	Class ⊠ A □ B □ C □ D
Test Mode	Operating	Tested by	Frank Liao

NOTE: Limits classified according to item 7.5.1.

Test result of EN 61000-3-2

Urms = 229.9V Freq = 50.013 Range: 2 A Irms = 0.098A Ipk = 0.493A cf = 5.050 P = 9.866W S = 22.45VA pf = 0.439

THDu = 0.10 %

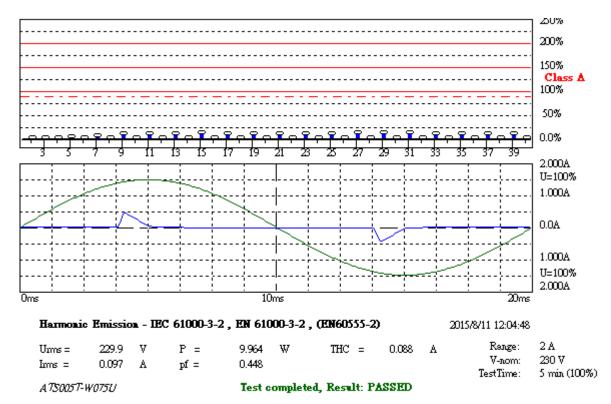
Class A

Test - Time : 5min (100 %)

Test completed, Result: PASSED

THDi = 197 %

Order	Freq. [Hz]	lavg [A]	Irms [A]	Irms% [%]	Irms%L [%]	lmax [A]	Imax% [%]	lmax%L [%]	Limit [A]	Status
1	50	0.0452	0.0454	46.500	0.0440	0.0455	46.625	0.0440	4 0000	
2	100	0.0000	0.0001	0.1250	0.0113	0.0001	0.1250	0.0113	1.0800	
3	150	0.0402	0.0402	41.125	1.7461	0.0403	41.250	1.7514	2.3000	
4	200	0.0000	0.0001	0.1250	0.0284	0.0001	0.1250	0.0284	0.4300	
5	250	0.0381	0.0380	38.875	3.3302	0.0381	39.000	3.3409	1.1400	
6	300	0.0000	0.0002	0.2500	0.0814	0.0002	0.2500	0.0814	0.3000	
7	350	0.0349	0.0349	35.750	4.5340	0.0349	35.750	4.5340	0.7700	
8	400	0.0000	0.0002	0.2500	0.1061	0.0002	0.2500	0.1061	0.2300	
9	450	0.0311	0.0311	31.875	7.7820	0.0311	31.875	7.7820	0.4000	
10	500	0.0000	0.0002	0.2500	0.1327	0.0002	0.2500	0.1327	0.1840	
11	550	0.0267	0.0267	27.375	8.1010	0.0269	27.500	8.1380	0.3300	
12	600	0.0000	0.0002	0.2500	0.1592	0.0004	0.3750	0.2388	0.1533	
13	650	0.0224	0.0225	23.000	10.696	0.0225	23.000	10.696	0.2100	
14	700	0.0000	0.0002	0.2500	0.1858	0.0004	0.3750	0.2786	0.1314	
15	750	0.0182	0.0182	18.625	12.126	0.0183	18.750	12.207	0.1500	
16	800	0.0000	0.0002	0.2500	0.2123	0.0004	0.3750	0.3184	0.1150	
17	850	0.0147	0.0146	15.000	11.068	0.0148	15.125	11.160	0.1324	
18	900	0.0000	0.0002	0.2500	0.2388	0.0004	0.3750	0.3582	0.1022	
19	950	0.0121	0.0122	12.500	10.308	0.0122	12.500	10.308	0.1184	
20	1000	0.0000	0.0002	0.2500	0.2654	0.0004	0.3750	0.3981	0.0920	
21	1050	0.0106	0.0107	11.000	10.026	0.0107	11.000	10.026	0.1071	
22	1100	0.0000	0.0004	0.3750	0.4379	0.0004	0.3750	0.4379	0.0836	
23	1150	0.0101	0.0101	10.375	10.357	0.0101	10.375	10.357	0.0978	
24	1200	0.0000	0.0004	0.3750	0.4777	0.0004	0.3750	0.4777	0.0767	
25	1250	0.0099	0.0100	10.250	11.122	0.0100	10.250	11.122	0.0900	
26	1300	0.0000	0.0004	0.3750	0.5175	0.0004	0.3750	0.5175	0.0708	
27	1350	0.0098	0.0099	10.125	11.865	0.0099	10.125	11.865	0.0833	
28	1400	0.0000	0.0004	0.3750	0.5573	0.0005	0.5000	0.7430	0.0657	
29	1450	0.0095	0.0095	9.7500	12.272	0.0096	9.8750	12.429	0.0776	
30	1500	0.0000	0.0005	0.5000	0.7961	0.0005	0.5000	0.7961	0.0613	
31	1550	0.0089	0.0090	9.2500	12.446	0.0090	9.2500	12.446	0.0726	
32	1600	0.0000	0.0005	0.5000	0.8492	0.0006	0.6250	1.0615	0.0575	
33	1650	0.0082	0.0083	8.5000	12.174	0.0084	8.6250	12.354	0.0682	
34	1700	0.0000	0.0006	0.6250	1.1278	0.0006	0.6250	1.1278	0.0541	
35	1750	0.0075	0.0077	7.8750	11.963	0.0007	7.8750	11.963	0.0643	
36	1800	0.0000	0.0006	0.6250	1.1942	0.0007	0.7500	1.4330	0.0511	
37	1850	0.0069	0.0000	7.2500	11.643	0.0007	7.2500	11.643	0.0608	
38	1900	0.0009	0.0071	0.7500	1.5126	0.0071	0.8750	1.7647	0.0008	
39	1950	0.0064	0.0066	6.7500	1.3126	0.0009	6.8750	11.637	0.0464	
40	2000	0.0004	0.0000	0.7500	1.5922	0.0007	0.8750	1.8576	0.0377	
40	2000	0.0000	0.0007	0.7300	1.0922	0.0009	0.0730	1.0070	0.0400	



Model: KTPS05-07510U-VI

Power Consumption	9.964W	Test Results	PASS
Environmental Conditions	20°C, 57% RH, 1009mbar	Limits	Class ⊠ A □ B □ C □ D
Test Mode	Operating	Tested by	Frank Liao

NOTE: Limits classified according to item 7.5.1.

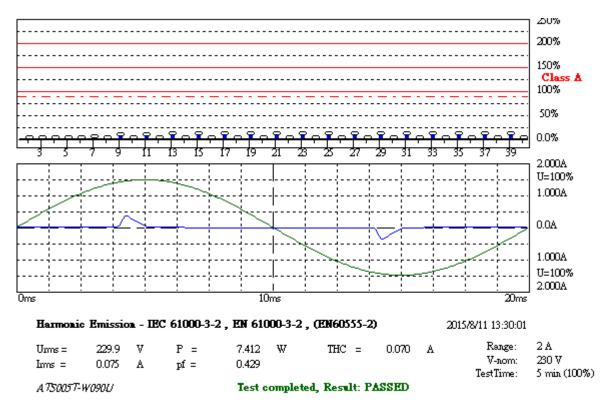
Test result of EN 61000-3-2

Urms = 229.9V Freq = 50.013 Range: 2 A Irms = 0.097A Ipk = 0.471A cf = 4.869 P = 9.964W S = 22.23VA pf = 0.448 THDi = 192 % THDu = 0.10 % Class A

Test - Time : 5min (100 %)

Test completed, Result: PASSED

Order	Freq. [Hz]	lavg [A]	Irms [A]	Irms% [%]	Irms%L [%]	Imax [A]	Imax% [%]	Imax%L [%]	Limit [A]	Status
1	50	0.0459	0.0459	47.475		0.0464	47.980			
2	100	0.0000	0.0001	0.1263	0.0113	0.0001	0.1263	0.0113	1.0800	
3	150	0.0406	0.0405	41.919	1.7621	0.0409	42.298	1.7780	2.3000	
4	200	0.0000	0.0001	0.1263	0.0284	0.0001	0.1263	0.0284	0.4300	
5	250	0.0383	0.0382	39.520	3.3516	0.0385	39.773	3.3730	1.1400	
6	300	0.0000	0.0002	0.2525	0.0814	0.0002	0.2525	0.0814	0.3000	
7	350	0.0349	0.0349	36.111	4.5340	0.0350	36.237	4.5499	0.7700	
8	400	0.0000	0.0002	0.2525	0.1061	0.0002	0.2525	0.1061	0.2300	
9	450	0.0308	0.0308	31.818	7.6904	0.0308	31.818	7.6904	0.4000	
10	500	0.0000	0.0002	0.2525	0.1327	0.0002	0.2525	0.1327	0.1840	
11	550	0.0262	0.0262	27.146	7.9531	0.0262	27.146	7.9531	0.3300	
12	600	0.0000	0.0002	0.2525	0.1592	0.0004	0.3788	0.2388	0.1533	
13	650	0.0215	0.0216	22.348	10.289	0.0216	22.348	10.289	0.2100	
14	700	0.0000	0.0002	0.2525	0.1858	0.0002	0.2525	0.1858	0.1314	
15	750	0.0172	0.0173	17.929	11.556	0.0175	18.056	11.637	0.1500	
16	800	0.0000	0.0002	0.2525	0.2123	0.0002	0.2525	0.2123	0.1150	
17	850	0.0137	0.0139	14.394	10.514	0.0139	14.394	10.514	0.1324	
18	900	0.0000	0.0002	0.2525	0.2388	0.0002	0.2525	0.2388	0.1022	
19	950	0.0112	0.0114	11.742	9.5866	0.0115	11.869	9.6897	0.1184	
20	1000	0.0000	0.0002	0.2525	0.2654	0.0002	0.2525	0.2654	0.0920	
21	1050	0.0100	0.0101	10.480	9.4564	0.0103	10.606	9.5703	0.1071	
22	1100	0.0000	0.0002	0.2525	0.2919	0.0004	0.3788	0.4379	0.0836	
23	1150	0.0096	0.0098	10.101	9.9826	0.0098	10.101	9.9826	0.0978	
24	1200	0.0000	0.0002	0.2525	0.3184	0.0004	0.3788	0.4777	0.0767	
25	1250	0.0095	0.0096	9.9747	10.715	0.0098	10.101	10.851	0.0900	
26	1300	0.0000	0.0004	0.3788	0.5175	0.0004	0.3788	0.5175	0.0708	
27	1350	0.0093	0.0095	9.8485	11.426	0.0095	9.8485	11.426	0.0833	
28	1400	0.0000	0.0004	0.3788	0.5573	0.0004	0.3788	0.5573	0.0657	
29	1450	0.0089	0.0090	9.3434	11.643	0.0092	9.4697	11.800	0.0776	
30	1500	0.0000	0.0004	0.3788	0.5971	0.0005	0.5051	0.7961	0.0613	
31	1550	0.0082	0.0084	8.7121	11.605	0.0084	8.7121	11.605	0.0726	
32	1600	0.0000	0.0005	0.5051	0.8492	0.0005	0.5051	0.8492	0.0575	
33	1650	0.0073	0.0076	7.8283	11.100	0.0076	7.8283	11.100	0.0682	
34	1700	0.0000	0.0005	0.5051	0.9023	0.0005	0.5051	0.9023	0.0541	
35	1750	0.0066	0.0068	7.0707	10.634	0.0000	7.1970	10.824	0.0643	
36	1800	0.0000	0.0005	0.5051	0.9553	0.0076	0.6313	1.1942	0.0511	
37	1850	0.0061	0.0063	6.5657	10.438	0.0063	6.5657	10.438	0.0608	
3 <i>1</i> 38	1900	0.0001	0.0003	0.6313	1.2605	0.0003	0.6313	1.2605	0.0008	
39	1900	0.0000	0.0060	6.1869	10.368	0.0060	6.1869	10.368	0.0464	
39 40	2000	0.0007	0.0000	0.6313	1.3269	0.0000	0.6313	1.3269	0.0377	
40	2000	0.0000	0.0006	0.0313	1.3209	0.0006	0.0313	1.3209	0.0400	



Model: KTPS05-09006U-VI

Power Consumption	7.412W	Test Results	PASS
Environmental Conditions	20°C, 57% RH, 1009mbar	Limits	Class ⊠ A □ B □ C □ D
Test Mode	Operating	Tested by	Frank Liao

NOTE: Limits classified according to item 7.5.1.

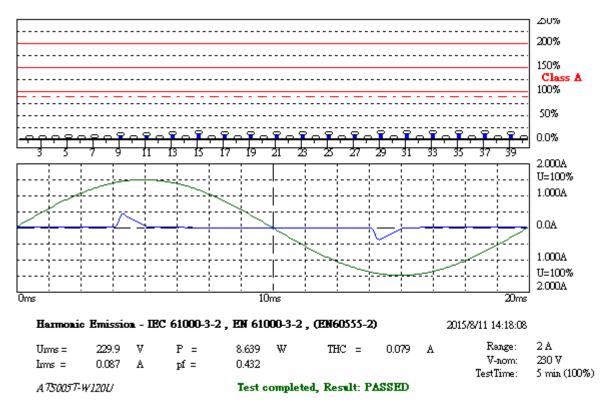
Test result of EN 61000-3-2

Urms = 229.9V Freq = 50.013 Range: 2 A Irms = 0.075A | Ipk = 0.395A | cf = P = 7.412W | S = 17.29VA | pf = 5.247 0.429 THDi = 204 % THDu = 0.10 % Class A

Test - Time : (100 %) 5min

Test completed, Result: PASSED

Order	Freq. [Hz]	lavg [A]	Irms [A]	Irms% [%]	Irms%L [%]	Imax [A]	Imax% [%]	Imax%L [%]	Limit [A]	Status
1	50	0.0343	0.0344	45.779		0.0359	47.727			
2	100	0.0000	0.0001	0.1623	0.0113	0.0001	0.1623	0.0113	1.0800	
3	150	0.0297	0.0297	39.448	1.2897	0.0311	41.396	1.3534	2.3000	
4	200	0.0000	0.0001	0.1623	0.0284	0.0001	0.1623	0.0284	0.4300	
5	250	0.0284	0.0284	37.825	2.4949	0.0297	39.448	2.6020	1.1400	
6	300	0.0000	0.0001	0.1623	0.0407	0.0002	0.3247	0.0814	0.3000	
7	350	0.0266	0.0266	35.390	3.4560	0.0277	36.851	3.5987	0.7700	
8	400	0.0000	0.0002	0.3247	0.1061	0.0002	0.3247	0.1061	0.2300	
9	450	0.0244	0.0244	32.468	6.1035	0.0253	33.604	6.3171	0.4000	
10	500	0.0000	0.0002	0.3247	0.1327	0.0002	0.3247	0.1327	0.1840	
11	550	0.0217	0.0217	28.896	6.5844	0.0223	29.708	6.7694	0.3300	
12	600	0.0000	0.0002	0.3247	0.1592	0.0002	0.3247	0.1592	0.1533	
13	650	0.0190	0.0190	25.325	9.0681	0.0194	25.812	9.2425	0.2100	
14	700	0.0000	0.0002	0.3247	0.1858	0.0002	0.3247	0.1858	0.1314	
15	750	0.0161	0.0162	21.591	10.824	0.0164	21.753	10.905	0.1500	
16	800	0.0000	0.0002	0.3247	0.2123	0.0002	0.3247	0.2123	0.1150	
17	850	0.0135	0.0135	18.019	10.238	0.0135	18.019	10.238	0.1324	
18	900	0.0000	0.0002	0.3247	0.2388	0.0002	0.3247	0.2388	0.1022	
19	950	0.0112	0.0112	14.935	9.4835	0.0112	14.935	9.4835	0.1184	
20	1000	0.0000	0.0002	0.3247	0.2654	0.0002	0.3247	0.2654	0.0920	
21	1050	0.0094	0.0094	12.500	8.7728	0.0095	12.662	8.8867	0.1071	
22	1100	0.0000	0.0002	0.3247	0.2919	0.0002	0.3247	0.2919	0.0836	
23	1150	0.0081	0.0082	10.877	8.3605	0.0084	11.201	8.6100	0.0978	
24	1200	0.0000	0.0002	0.3247	0.3184	0.0004	0.4870	0.4777	0.0767	
25	1250	0.0074	0.0076	10.065	8.4093	0.0077	10.227	8.5449	0.0900	
26	1300	0.0000	0.0004	0.4870	0.5175	0.0004	0.4870	0.5175	0.0708	
27	1350	0.0071	0.0072	9.5779	8.6426	0.0074	9.9026	8.9355	0.0833	
28	1400	0.0000	0.0004	0.4870	0.5573	0.0004	0.4870	0.5573	0.0657	
29	1450	0.0070	0.0072	9.5779	9.2828	0.0073	9.7403	9.4401	0.0776	
30	1500	0.0000	0.0004	0.4870	0.5971	0.0073	0.4870	0.5971	0.0613	
31	1550	0.0069	0.0070	9.2532	9.5866	0.0071	9.4156	9.7548	0.0726	
32	1600	0.0000	0.0076	0.4870	0.6369	0.0005	0.6494	0.8492	0.0575	
33	1650	0.0066	0.0067	8.9286	9.8470	0.0068	9.0909	10.026	0.0682	
34	1700	0.0000	0.0007	0.6494	0.9023	0.0005	0.6494	0.9023	0.0541	
35	1750	0.0063	0.0063	8.4416	9.8741	0.0065	8.6039	10.064	0.0643	
36	1800	0.0003	0.0005	0.6494	0.9553	0.0005	0.6494	0.9553	0.0043	
37	1850	0.0058	0.0060	7.9545	9.8362	0.0060	7.9545	9.8362	0.0608	
3 <i>1</i> 38	1900	0.0000	0.0000	7.95 4 5 0.6494	9.0302 1.0084	0.0000	7.9545 0.6494	1.0084	0.0606	
	1900	0.0000	0.0005	7.1429	9.3099	0.0005	7.1429	9.3099	0.0464	
39										
40	2000	0.0000	0.0005	0.6494	1.0615	0.0006	0.8117	1.3269	0.0460	



Model: KTPS05-12006U-VI

Power Consumption	8.639W	Test Results	PASS
Environmental Conditions	20°C, 57% RH, 1009mbar	Limits	Class ⊠ A □ B □ C □ D
Test Mode	Operating	Tested by	Frank Liao

NOTE: Limits classified according to item 7.5.1.

Test result of EN 61000-3-2

HAR-1000 PMC-Partner

Reference No.: T170301D08-E Report No.: T170419D01-E

 Urms =
 229.9V
 Freq =
 50.000
 Range:
 2 A

 Irms =
 0.087A
 Ipk =
 0.447A
 cf =
 5.146

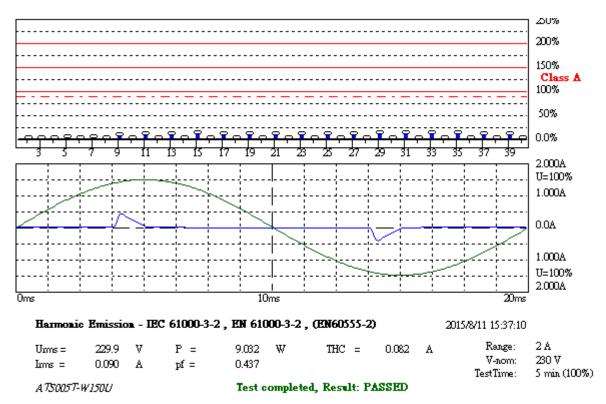
 P =
 8.639W
 S =
 19.98VA
 pf =
 0.432

 THDi =
 200 %
 THDu =
 0.10 %
 Class A

Test - Time : 5min (100 %)

Test completed, Result: PASSED

Order	Freq. [Hz]	lavg [A]	Irms [A]	Irms% [%]	Irms%L [%]	lmax [A]	Imax% [%]	Imax%L [%]	Limit [A]	Status
1	50	0.0394	0.0398	45.787		0.0399	45.927			
2	100	0.0000	0.0001	0.1404	0.0113	0.0001	0.1404	0.0113	1.0800	
3	150	0.0348	0.0348	40.028	1.5126	0.0348	40.028	1.5126	2.3000	
4	200	0.0000	0.0001	0.1404	0.0284	0.0001	0.1404	0.0284	0.4300	
5	250	0.0331	0.0331	38.062	2.9018	0.0331	38.062	2.9018	1.1400	
6	300	0.0000	0.0001	0.1404	0.0407	0.0002	0.2809	0.0814	0.3000	
7	350	0.0306	0.0306	35.253	3.9792	0.0308	35.393	3.9950	0.7700	
8	400	0.0000	0.0001	0.1404	0.0531	0.0002	0.2809	0.1061	0.2300	
9	450	0.0276	0.0276	31.742	6.8970	0.0277	31.882	6.9275	0.4000	
10	500	0.0000	0.0001	0.1404	0.0663	0.0002	0.2809	0.1327	0.1840	
11	550	0.0242	0.0242	27.809	7.3242	0.0242	27.809	7.3242	0.3300	
12	600	0.0000	0.0002	0.2809	0.1592	0.0002	0.2809	0.1592	0.1533	
13	650	0.0206	0.0206	23.736	9.8238	0.0206	23.736	9.8238	0.2100	
14	700	0.0000	0.0002	0.2809	0.1858	0.0002	0.2809	0.1858	0.1314	
15	750	0.0171	0.0171	19.663	11.393	0.0171	19.663	11.393	0.1500	
16	800	0.0000	0.0002	0.2809	0.2123	0.0002	0.2809	0.2123	0.1150	
17	850	0.0140	0.0140	16.152	10.607	0.0140	16.152	10.607	0.1324	
18	900	0.0000	0.0002	0.2809	0.2388	0.0002	0.2809	0.2388	0.1022	
19	950	0.0115	0.0115	13.202	9.6897	0.0116	13.343	9.7928	0.1184	
20	1000	0.0000	0.0002	0.2809	0.2654	0.0002	0.2809	0.2654	0.0920	
21	1050	0.0099	0.0099	11.376	9.2285	0.0099	11.376	9.2285	0.1071	
22	1100	0.0000	0.0002	0.2809	0.2919	0.0004	0.4213	0.4379	0.0836	
23	1150	0.0090	0.0090	10.393	9.2339	0.0090	10.393	9.2339	0.0978	
24	1200	0.0000	0.0002	0.2809	0.3184	0.0004	0.4213	0.4777	0.0767	
25	1250	0.0087	0.0087	9.9719	9.6300	0.0088	10.112	9.7656	0.0900	
26	1300	0.0000	0.0004	0.4213	0.5175	0.0004	0.4213	0.5175	0.0708	
27	1350	0.0087	0.0087	9.9719	10.400	0.0087	9.9719	10.400	0.0833	
28	1400	0.0000	0.0004	0.4213	0.5573	0.0004	0.4213	0.5573	0.0657	
29	1450	0.0085	0.0085	9.8315	11.013	0.0085	9.8315	11.013	0.0776	
30	1500	0.0000	0.0004	0.4213	0.5971	0.0005	0.5618	0.7961	0.0613	
31	1550	0.0082	0.0082	9.4101	11.268	0.0083	9.5506	11.437	0.0726	
32	1600	0.0000	0.0005	0.5618	0.8492	0.0005	0.5618	0.8492	0.0575	
33	1650	0.0078	0.0078	8.9888	11.458	0.0078	8.9888	11.458	0.0682	
34	1700	0.0000	0.0006	0.7022	1.1278	0.0006	0.7022	1.1278	0.0541	
35	1750	0.0072	0.0072	8.2865	11.203	0.0073	8.4270	11.393	0.0643	
36	1800	0.0000	0.0006	0.7022	1.1942	0.0006	0.7022	1.1942	0.0511	
37	1850	0.0067	0.0066	7.5843	10.840	0.0068	7.8652	11.241	0.0608	
38	1900	0.0000	0.0007	0.8427	1.5126	0.0007	0.8427	1.5126	0.0484	
39	1950	0.0062	0.0061	7.0225	10.579	0.0063	7.3034	11.003	0.0577	
40	2000	0.0002	0.0007	0.8427	1.5922	0.0009	0.9831	1.8576	0.0460	
. 5	_000	3.0000	3.0001	5.0 121		3.0000	3.0001		3.0 100	



Model: KTPS05-15005U-VI

Power Consumption	9.032W	Test Results	PASS
Environmental Conditions	20°C, 57% RH, 1009mbar	Limits	Class ⊠ A □ B □ C □ D
Test Mode	Operating	Tested by	Frank Liao

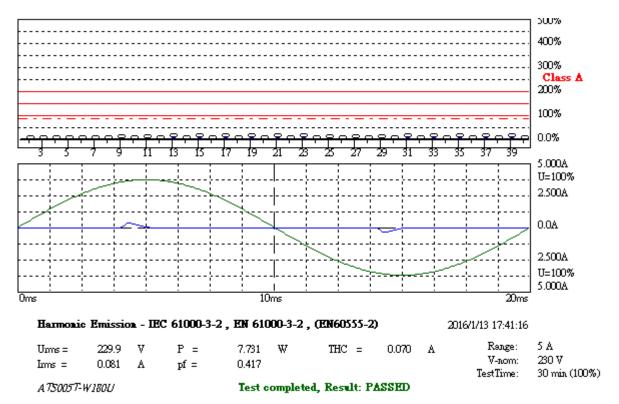
NOTE: Limits classified according to item 7.5.1.

Test result of EN 61000-3-2

Test - Time : 5min (100 %)

Test completed, Result: PASSED

Order	Freq. [Hz]	lavg [A]	Irms [A]	Irms% [%]	Irms%L [%]	Imax [A]	Imax% [%]	Imax%L [%]	Limit [A]	Status
1	50	0.0415	0.0417	46.467		0.0417	46.467			
2	100	0.0000	0.0001	0.1359	0.0113	0.0001	0.1359	0.0113	1.0800	
3	150	0.0366	0.0366	40.761	1.5922	0.0366	40.761	1.5922	2.3000	
4	200	0.0000	0.0001	0.1359	0.0284	0.0001	0.1359	0.0284	0.4300	
5	250	0.0347	0.0348	38.723	3.0518	0.0348	38.723	3.0518	1.1400	
6	300	0.0000	0.0002	0.2717	0.0814	0.0002	0.2717	0.0814	0.3000	
7	350	0.0321	0.0321	35.734	4.1694	0.0321	35.734	4.1694	0.7700	
8	400	0.0000	0.0002	0.2717	0.1061	0.0002	0.2717	0.1061	0.2300	
9	450	0.0287	0.0287	31.929	7.1716	0.0287	31.929	7.1716	0.4000	
10	500	0.0000	0.0002	0.2717	0.1327	0.0002	0.2717	0.1327	0.1840	
11	550	0.0249	0.0249	27.717	7.5462	0.0249	27.717	7.5462	0.3300	
12	600	0.0000	0.0002	0.2717	0.1592	0.0002	0.2717	0.1592	0.1533	
13	650	0.0210	0.0210	23.370	9.9981	0.0211	23.505	10.056	0.2100	
14	700	0.0000	0.0002	0.2717	0.1858	0.0002	0.2717	0.1858	0.1314	
15	750	0.0172	0.0173	19.293	11.556	0.0173	19.293	11.556	0.1500	
16	800	0.0000	0.0002	0.2717	0.2123	0.0002	0.2717	0.2123	0.1150	
17	850	0.0140	0.0140	15.625	10.607	0.0140	15.625	10.607	0.1324	
18	900	0.0000	0.0002	0.2717	0.2388	0.0002	0.2717	0.2388	0.1022	
19	950	0.0115	0.0115	12.772	9.6897	0.0116	12.908	9.7928	0.1184	
20	1000	0.0000	0.0002	0.2717	0.2654	0.0004	0.4076	0.3981	0.0920	
21	1050	0.0100	0.0100	11.141	9.3424	0.0100	11.141	9.3424	0.1071	
22	1100	0.0000	0.0002	0.2717	0.2919	0.0004	0.4076	0.4379	0.0836	
23	1150	0.0093	0.0093	10.326	9.4835	0.0093	10.326	9.4835	0.0978	
24	1200	0.0000	0.0004	0.4076	0.4777	0.0004	0.4076	0.4777	0.0767	
25	1250	0.0090	0.0090	10.054	10.037	0.0090	10.054	10.037	0.0900	
26	1300	0.0000	0.0004	0.4076	0.5175	0.0004	0.4076	0.5175	0.0708	
27	1350	0.0090	0.0090	10.054	10.840	0.0090	10.054	10.840	0.0833	
28	1400	0.0000	0.0004	0.4076	0.5573	0.0004	0.4076	0.5573	0.0657	
29	1450	0.0088	0.0088	9.7826	11.328	0.0088	9.7826	11.328	0.0776	
30	1500	0.0000	0.0005	0.5435	0.7961	0.0005	0.5435	0.7961	0.0613	
31	1550	0.0083	0.0083	9.2391	11.437	0.0084	9.3750	11.605	0.0726	
32	1600	0.0000	0.0005	0.5435	0.8492	0.0006	0.6793	1.0615	0.0575	
33	1650	0.0078	0.0078	8.6957	11.458	0.0079	8.8315	11.637	0.0682	
34	1700	0.0000	0.0006	0.6793	1.1278	0.0006	0.6793	1.1278	0.0541	
35	1750	0.0072	0.0072	8.0163	11.203	0.0073	8.1522	11.393	0.0643	
36	1800	0.0000	0.0006	0.6793	1.1942	0.0075	0.6793	1.1942	0.0511	
37	1850	0.0066	0.0066	7.3370	10.840	0.0067	7.4728	11.041	0.0608	
3 <i>1</i> 38	1900	0.0000	0.0007	0.8152	1.5126	0.0007	0.8152	1.5126	0.0008	
39	1900	0.0000	0.0007	6.7935	1.5120	0.0067	6.9293	1.5120	0.0464	
39 40	2000	0.0000	0.0001	0.7935	1.8576	0.0002	0.9293	1.8576	0.0377	
40	2000	0.0000	0.0009	0.9511	1.00/0	0.0009	0.9511	1.0070	0.0400	



Model: KTPS05-18033U-VI

Power Consumption	7.731W	Test Results	PASS
Environmental Conditions	22°C, 56% RH, 1005mbar	Limits	Class ⊠ A □ B □ C □ D
Test Mode	Operating	Tested by	David Cheng

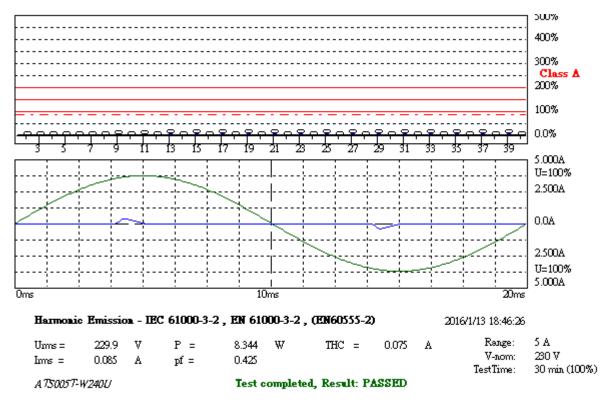
NOTE: Limits classified according to item 7.5.1.

Test result of EN 61000-3-2

Test - Time : 30min (100 %)

Test completed, Result: PASSED

Order	Freq. [Hz]	lavg [A]	Irms [A]	Irms% [%]	Irms%L [%]	lmax [A]	Imax% [%]	Imax%L [%]	Limit [A]	Status
1	50	0.0360	0.0360	44.697		0.0360	44.697			
2	100	0.0000	0.0003	0.3788	0.0283	0.0003	0.3788	0.0283	1.0800	
3	150	0.0290	0.0290	35.985	1.2605	0.0290	35.985	1.2605	2.3000	
4	200	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.4300	
5	250	0.0281	0.0281	34.848	2.4628	0.0281	34.848	2.4628	1.1400	
6	300	0.0000	0.0003	0.3788	0.1017	0.0003	0.3788	0.1017	0.3000	
7	350	0.0266	0.0266	32.955	3.4481	0.0266	32.955	3.4481	0.7700	
8	400	0.0000	0.0003	0.3788	0.1327	0.0003	0.3788	0.1327	0.2300	
9	450	0.0244	0.0244	30.303	6.1035	0.0244	30.303	6.1035	0.4000	
10	500	0.0000	0.0003	0.3788	0.1659	0.0003	0.3788	0.1659	0.1840	
11	550	0.0223	0.0223	27.652	6.7509	0.0223	27.652	6.7509	0.3300	
12	600	0.0000	0.0003	0.3788	0.1990	0.0003	0.3788	0.1990	0.1533	
13	650	0.0195	0.0195	24.242	9.3006	0.0195	24.242	9.3006	0.2100	
14	700	0.0000	0.0003	0.3788	0.2322	0.0003	0.3788	0.2322	0.1314	
15	750	0.0171	0.0171	21.212	11.393	0.0171	21.212	11.393	0.1500	
16	800	0.0000	0.0003	0.3788	0.2654	0.0003	0.3788	0.2654	0.1150	
17	850	0.0143	0.0143	17.803	10.837	0.0143	17.803	10.837	0.1324	
18	900	0.0000	0.0003	0.3788	0.2985	0.0003	0.3788	0.2985	0.1022	
19	950	0.0120	0.0122	15.152	10.308	0.0122	15.152	10.308	0.1184	
20	1000	0.0000	0.0003	0.3788	0.3317	0.0003	0.3788	0.3317	0.0920	
21	1050	0.0101	0.0101	12.500	9.3994	0.0101	12.500	9.3994	0.1071	
22	1100	0.0000	0.0003	0.3788	0.3649	0.0003	0.3788	0.3649	0.0836	
23	1150	0.0085	0.0085	10.606	8.7348	0.0085	10.606	8.7348	0.0978	
24	1200	0.0000	0.0003	0.3788	0.3981	0.0003	0.3788	0.3981	0.0767	
25	1250	0.0073	0.0073	9.0909	8.1380	0.0073	9.0909	8.1380	0.0900	
26	1300	0.0000	0.0003	0.3788	0.4312	0.0003	0.3788	0.4312	0.0708	
27	1350	0.0067	0.0067	8.3333	8.0566	0.0067	8.3333	8.0566	0.0833	
28	1400	0.0000	0.0003	0.3788	0.4644	0.0003	0.3788	0.4644	0.0657	
29	1450	0.0064	0.0064	7.9545	8.2601	0.0067	8.3333	8.6534	0.0776	
30	1500	0.0000	0.0003	0.3788	0.4976	0.0003	0.3788	0.4976	0.0613	
31	1550	0.0064	0.0064	7.9545	8.8298	0.0064	7.9545	8.8298	0.0726	
32	1600	0.0000	0.0003	0.3788	0.5307	0.0003	0.3788	0.5307	0.0575	
33	1650	0.0061	0.0061	7.5758	8.9518	0.0061	7.5758	8.9518	0.0682	
34	1700	0.0000	0.0003	0.3788	0.5639	0.0003	0.3788	0.5639	0.0541	
35	1750	0.0058	0.0058	7.1970	9.0196	0.0061	7.5758	9.4944	0.0643	
36	1800	0.0000	0.0003	0.3788	0.5971	0.0003	0.3788	0.5971	0.0511	
37	1850	0.0055	0.0055	6.8182	9.0332	0.0058	7.1970	9.5350	0.0608	
38	1900	0.0000	0.0003	0.3788	0.6303	0.0003	0.3788	0.6303	0.0484	
39	1950	0.0051	0.0052	6.4394	8.9925	0.0052	6.4394	8.9925	0.0577	
40	2000	0.0000	0.0003	0.3788	0.6634	0.0002	0.7576	1.3269	0.0460	
10	2000	0.0000	0.0000	0.0700	5.000∓	0.0000	0.1010	1.0200	3.0-00	



Model: KTPS05-24025U-VI

Power Consumption	8.344W	Test Results	PASS
Environmental Conditions	22°C, 56% RH, 1005mbar	Limits	Class ⊠ A □ B □ C □ D
Test Mode	Operating	Tested by	David Cheng

NOTE: Limits classified according to item 7.5.1.

Test result of EN 61000-3-2

 Urms =
 229.9V
 Freq =
 50.013
 Range:
 5 A

 Irms =
 0.085A
 Ipk =
 0.417A
 cf =
 4.886

 P =
 8.344W
 S =
 19.65VA
 pf =
 0.425

 THDi =
 194 %
 THDu =
 0.10 %
 Class A

Test - Time : 30min (100 %)

Test completed, Result: PASSED

Order	Freq. [Hz]	lavg [A]	Irms [A]	Irms% [%]	Irms%L [%]	lmax [A]	Imax% [%]	Imax%L [%]	Limit [A]	Status
1	50	0.0388	0.0388	45.357	L	0.0388	45.357	1		
2	100	0.0000	0.0003	0.3571	0.0283	0.0003	0.3571	0.0283	1.0800	
3	150	0.0317	0.0317	37.143	1.3799	0.0317	37.143	1.3799	2.3000	
4	200	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.4300	
5	250	0.0305	0.0305	35.714	2.6770	0.0305	35.714	2.6770	1.1400	
6	300	0.0000	0.0000	0.0000	0.0000	0.0003	0.3571	0.1017	0.3000	
7	350	0.0287	0.0287	33.571	3.7255	0.0287	33.571	3.7255	0.7700	
8	400	0.0000	0.0003	0.3571	0.1327	0.0003	0.3571	0.1327	0.2300	
9	450	0.0262	0.0262	30.714	6.5613	0.0262	30.714	6.5613	0.4000	
10	500	0.0000	0.0003	0.3571	0.1659	0.0003	0.3571	0.1659	0.1840	
11	550	0.0235	0.0235	27.500	7.1208	0.0235	27.500	7.1208	0.3300	
12	600	0.0000	0.0003	0.3571	0.1990	0.0003	0.3571	0.1990	0.1533	
13	650	0.0205	0.0204	23.929	9.7366	0.0208	24.286	9.8819	0.2100	
14	700	0.0000	0.0003	0.3571	0.2322	0.0003	0.3571	0.2322	0.1314	
15	750	0.0175	0.0174	20.357	11.597	0.0177	20.714	11.800	0.1500	
16	800	0.0000	0.0003	0.3571	0.2654	0.0003	0.3571	0.2654	0.1150	
17	850	0.0146	0.0146	17.143	11.068	0.0146	17.143	11.068	0.1324	
18	900	0.0000	0.0003	0.3571	0.2985	0.0003	0.3571	0.2985	0.1022	
19	950	0.0119	0.0119	13.929	10.050	0.0119	13.929	10.050	0.1184	
20	1000	0.0000	0.0000	0.0000	0.0000	0.0003	0.3571	0.3317	0.0920	
21	1050	0.0098	0.0098	11.429	9.1146	0.0101	11.786	9.3994	0.1071	
22	1100	0.0000	0.0003	0.3571	0.3649	0.0003	0.3571	0.3649	0.0836	
23	1150	0.0083	0.0082	9.6429	8.4229	0.0085	10.000	8.7348	0.0978	
24	1200	0.0000	0.0003	0.3571	0.3981	0.0003	0.3571	0.3981	0.0767	
25	1250	0.0075	0.0076	8.9286	8.4771	0.0076	8.9286	8.4771	0.0900	
26	1300	0.0000	0.0003	0.3571	0.4312	0.0003	0.3571	0.4312	0.0708	
27	1350	0.0070	0.0070	8.2143	8.4229	0.0070	8.2143	8.4229	0.0833	
28	1400	0.0000	0.0003	0.3571	0.4644	0.0003	0.3571	0.4644	0.0657	
29	1450	0.0070	0.0070	8.2143	9.0468	0.0070	8.2143	9.0468	0.0776	
30	1500	0.0000	0.0003	0.3571	0.4976	0.0003	0.3571	0.4976	0.0613	
31	1550	0.0067	0.0067	7.8571	9.2502	0.0070	8.2143	9.6707	0.0726	
32	1600	0.0000	0.0003	0.3571	0.5307	0.0003	0.3571	0.5307	0.0575	
33	1650	0.0064	0.0064	7.5000	9.3994	0.0064	7.5000	9.3994	0.0682	
34	1700	0.0000	0.0003	0.3571	0.5639	0.0003	0.3571	0.5639	0.0541	
35	1750	0.0061	0.0061	7.1429	9.4944	0.0061	7.1429	9.4944	0.0643	
36	1800	0.0000	0.0003	0.3571	0.5971	0.0003	0.3571	0.5971	0.0511	
37	1850	0.0057	0.0058	6.7857	9.5350	0.0058	6.7857	9.5350	0.0608	
38	1900	0.0000	0.0003	0.3571	0.6303	0.0003	0.3571	0.6303	0.0484	
39	1950	0.0051	0.0052	6.0714	8.9925	0.0052	6.0714	8.9925	0.0577	
40	2000	0.0000	0.0003	0.3571	0.6634	0.0003	0.3571	0.6634	0.0460	
. •									3.0.00	

Definitions of Abbreviations

Urms Actual total Voltage in Volt RMS *** Actual total Current in Ampere RMS Irms lpk Actual Peak value of the Current in Ampere

cf Actual Crest Factor (lpk/lrms) Ρ Actual Active Power in Watt

*** S Actual Apparent Power in VA (Urms*Irms)

*** pf Actual Power Factor (P/S)

THDi Actual Total Harmonic Current Distortion in % *** Actual Total Harmonic Voltage Distortion in % THDu Actual Total Harmonic Current in Ampere THC PHC Actual Partial Harmonic Current in Ampere

Individual measurements for 2nd to 40th order:

Average value of the Individual Harmonic Current lavg

in Ampere RMS

Irms Actual Individual Harmonic Current

in Ampere RMS

Actual Individual Harmonic Current Irms%

in percentage of the actual total RMS Current

Actual Individual Harmonic Current Irms%L

in percentage of the applicable Limit

Imax Maximum Individual Harmonic Current

in Ampere RMS

Imax% Maximum Individual Harmonic Current

in percentage of the actual total RMS Current

Imax%lim Maximum Individual Harmonic Current

in percentage of the applicable Limit

Limit Irms Individual Limit (100%) for the selected Class

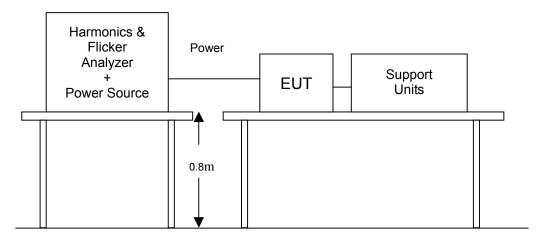
in Ampere RMS

7.6. VOLTAGE FLUCTUATION AND FLICKER MEASUREMENT

7.6.1. LIMITS OF VOLTAGE FLUCTUATION AND FLICKER MEASUREMENT

TEST ITEM	LIMIT	REMARK
P_{st}	1.0	P _{st} means short-term flicker indicator.
P _{lt}	0.65	P _{lt} means long-term flicker indicator.
T _{dt} (ms)	500	T _{dt} means maximum time that dt exceeds 3 %.
d _{max} (%)	4%	d _{max} means maximum relative voltage change.
dc (%)	3.3%	dc means relative steady-state voltage change

7.6.2. TEST INSTRUMENTS


Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
H/F Measurement System	EMC Partner	HAR1000-1P	189	08/12/2016
5KVA Power Source	Teseq	5001IX-208-TSQ	1207A03643	No Cal. Required
Digital Power Meter	Protronix	1201	201091	No Cal. Required
Software	HARCS V4.19			

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

7.6.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-030)

- The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the most unfavorable sequence of voltage changes under normal operating conditions.
- During the flick measurement, the measure time shall include that part of whole operation cycle in which the EUT produce the most unfavorable sequence of voltage changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

7.6.4. TEST SETUP

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

7.6.5. TEST RESULTS

Model: KTPS05-03315U-VI

Observation Period (Tp)	30mins	Test Mode	Operating
Environmental Conditions	20°C, 57% RH, 1009mbar	Tested by	Frank Liao

TEST PARAMETER	MEASUREMENT VALUE	LIMIT	REMARK
P _{st}	0.07	1.0	Pass
P _{lt}	0.07	0.65	Pass
T _{dt} (ms)	0	500	Pass
d _{max} (%)	0	4%	Pass
dc (%)	0	3.3%	Pass

Note: None.

Test result of EN 61000-3-3

Actual Flicker (Fli): 0.00 0.07 Short-term Flicker (Pst):

Limit (Pst): 1.00 Long-term Flicker (Plt): 0.07 Limit (Plt): 0.65

Maximum Relative Volt. Change (dmax): 0.00% Limit (dmax): 4.00%

Relative Steady-state Voltage Change (dc): 0.00% Limit (dc): 3.00%

Maximum Interval exceeding 3.00% (dt): 0.00ms Limit (dt>Lim): 200ms

Flicker Emission - IEC 61000-3-3, EN 61000-3-3

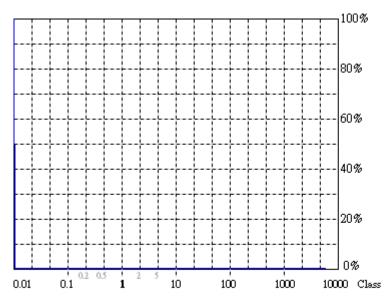
A75005T-W033U

Ums= 229.9 8.246 Ims = 0.088 pf = 0.408

Test completed, Result: PASSED

2015/8/11 09:25:13

Range: 2Α V-nom: 230 V TestTime: 30 min (100%)


Model: KTPS05-05010U-VI

Observation Period (Tp)	30mins	Test Mode	Operating
Environmental Conditions	20°C, 57% RH, 1009mbar	Tested by	Frank Liao

TEST PARAMETER	MEASUREMENT VALUE	LIMIT	REMARK
P_{st}	0.07	1.0	Pass
P _{lt}	0.07	0.65	Pass
T _{dt} (ms)	0	500	Pass
d _{max} (%)	0	4%	Pass
dc (%)	0	3.3%	Pass

Note: None.

Test result of EN 61000-3-3

0.00 Actual Flicker (Fli):

0.07 Short-term Flicker (Pst): Limit (Pst): 1.00

Long-term Flicker (Plt): 0.07

Limit (Plt): 0.65

Maximum Relative

Volt. Change (dmax): 0.00% Limit (dmax): 4.00%

Relative Steady-state

0.00% Voltage Change (dc):

Limit (dc): 3.00%

Maximum Interval

exceeding 3.00% (dt): 0.00ms

Limit (dt>Lim): 200ms

2015/8/11 10:18:54

Flicker Emission - IEC 61000-3-3, EN 61000-3-3

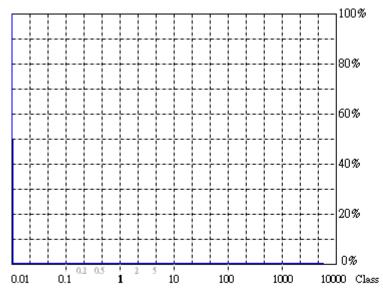
Ums= 229.9 P = 7.755 w Ims = 0.084 pf = 0.402

2 A Range: 230 V V-nom:

TestTime: 30 min (100%)

A75005T-W050U Test completed, Result: PASSED

HAR-1000 EMC-Retuce


Model: KTPS05-05015U-VI

Observation Period (Tp)	30mins	Test Mode	Operating
Environmental Conditions	20°C, 57% RH, 1009mbar	Tested by	Frank Liao

TEST PARAMETER	MEASUREMENT VALUE	LIMIT	REMARK
P _{st}	0.07	1.0	Pass
P _{lt}	0.07	0.65	Pass
T _{dt} (ms)	0	500	Pass
d _{max} (%)	0	4%	Pass
dc (%)	0.01	3.3%	Pass

Note: None.

Test result of EN 61000-3-3

Actual Flicker (Fli): 0.00

0.07 Short-term Flicker (Pst): Limit (Pst): 1.00

Long-term Flicker (Plt): 0.07

Limit (Plt): 0.65

Maximum Relative

Volt. Change (dmax): 0.00%

Limit (dmax): 4.00%

Relative Steady-state

0.01% Voltage Change (dc): Limit (dc): 3.00%

Maximum Interval

exceeding 3.00% (dt): 0.00ms

Limit (dt>Lim): 200ms

2015/8/11 10:37:47

Flicker Emission - IEC 61000-3-3, EN 61000-3-3

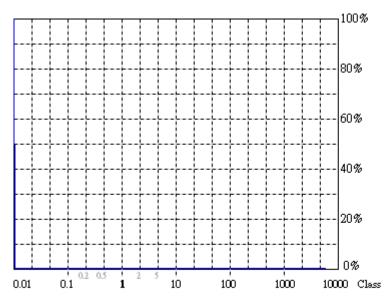
Ums= 229.9 P = 11.19 W Ims = 0.111 pf = 0.437

2 A Range: 230 V V-nom:

TestTime: 30 min (100%)

A75005T-W051U Test completed, Result: PASSED

HAR-1000 EMC-Retuce


Model: KTPS05-06012U-VI

Observation Period (Tp)	30mins	Test Mode	Operating
Environmental Conditions	20°C, 57% RH, 1009mbar	Tested by	Frank Liao

TEST PARAMETER	MEASUREMENT VALUE	LIMIT	REMARK
P _{st}	0.07	1.0	Pass
P _{lt}	0.07	0.65	Pass
T _{dt} (ms)	0	500	Pass
d _{max} (%)	0	4%	Pass
dc (%)	0	3.3%	Pass

Note: None.

Test result of EN 61000-3-3

0.00 Actual Flicker (Fli):

Short-term Flicker (Pst): 0.07 Limit (Pst): 1.00

Long-term Flicker (Plt): 0.07

Limit (Plt): 0.65

Maximum Relative

Volt. Change (dmax): 0.00%

Limit (dmax): 4.00%

Relative Steady-state

0.00% Voltage Change (dc):

Limit (dc): 3.00%

Maximum Interval

exceeding 3.00% (dt): 0.00ms

Limit (dt>Lim): 200ms

2015/8/11 11:43:02

Range:

Flicker Emission - IEC 61000-3-3, EN 61000-3-3

Ums= 229.9 P = 9.915 w Ims = 0.104 pf = 0.417

V-nom: TestTime:

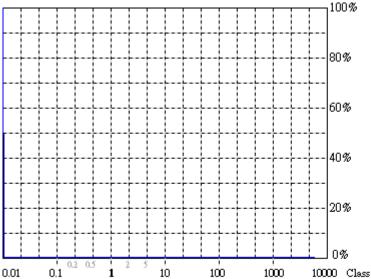
A75005T-W000U Test completed, Result: PASSED

HAR-1000 EMC-Retuce

30 min (100%)

2 A

230 V


Model: KTPS05-07510U-VI

Observation Period (Tp)	30mins	Test Mode	Operating
Environmental Conditions	20°C, 57% RH, 1009mbar	Tested by	Frank Liao

TEST PARAMETER	MEASUREMENT VALUE	LIMIT	REMARK
P _{st}	0.07	1.0	Pass
P _{lt}	0.07	0.65	Pass
T _{dt} (ms)	0	500	Pass
d _{max} (%)	0	4%	Pass
dc (%)	0	3.3%	Pass

Note: None.

Test result of EN 61000-3-3

0.00 Actual Flicker (Fli):

0.07 Short-term Flicker (Pst): Limit (Pst): 1.00

Long-term Flicker (Plt): 0.07

Maximum Relative

Volt. Change (dmax): 0.00%

Limit (dmax): 4.00%

Relative Steady-state

Limit (Plt):

0.00% Voltage Change (dc): Limit (dc): 3.00%

Maximum Interval

exceeding 3.00% (dt): 0.00ms 200ms

Limit (dt>Lim):

Flicker Emission - IEC 61000-3-3, EN 61000-3-3

Ums= 229.9 P = 9.964 W Ims = 0.103 pf = 0.423

A75005T-W075U

Test completed, Result: PASSED

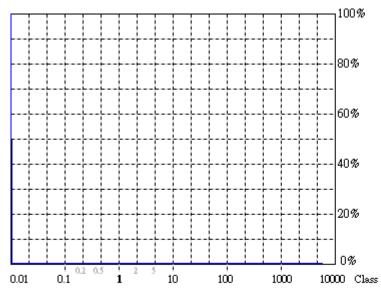
2015/8/11 12:38:41

2 A Range: 230 V V-nom:

TestTime: 30 min (100%)

HAR-1000 EMC-Retuce

0.65


Model: KTPS05-09006U-VI

Observation Period (Tp)	30mins	Test Mode	Operating
Environmental Conditions	20°C, 57% RH, 1009mbar	Tested by	Frank Liao

TEST PARAMETER	MEASUREMENT VALUE	LIMIT	REMARK
P_{st}	0.07	1.0	Pass
P _{lt}	0.07	0.65	Pass
T _{dt} (ms)	0	500	Pass
d _{max} (%)	0	4%	Pass
dc (%)	0	3.3%	Pass

Note: None.

Test result of EN 61000-3-3

0.00 Actual Flicker (Fli):

0.07 Short-term Flicker (Pst): Limit (Pst): 1.00

Long-term Flicker (Plt): 0.07

Limit (Plt): 0.65

Maximum Relative

Volt. Change (dmax): 0.00%

Limit (dmax): 4.00%

Relative Steady-state

0.00% Voltage Change (dc):

Limit (dc): 3.00%

Maximum Interval

exceeding 3.00% (dt): 0.00ms

Limit (dt>Lim): 200ms

2015/8/11 13:23:12

Flicker Emission - IEC 61000-3-3, EN 61000-3-3

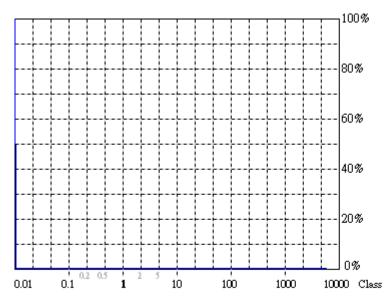
Ums= 229.9 P = 7.461 w Ims = 0.080 pf = 0.405

2 A Range:

230 V V-nom: TestTime: 30 min (100%)

A75005T-W090U Test completed, Result: PASSED

HAR-1000 EMC-Retuce


Model: KTPS05-12006U-VI

Observation Period (Tp)	30mins	Test Mode	Operating
Environmental Conditions	20°C, 57% RH, 1009mbar	Tested by	Frank Liao

TEST PARAMETER	MEASUREMENT VALUE	LIMIT	REMARK
P_{st}	0.07	1.0	Pass
P _{lt}	0.07	0.65	Pass
T _{dt} (ms)	0	500	Pass
d _{max} (%)	0	4%	Pass
dc (%)	0	3.3%	Pass

Note: None.

Test result of EN 61000-3-3

Actual Flicker (Fli): 0.00

Short-term Flicker (Pst): 0.07

Limit (Pst): 1.00 Long-term Flicker (Plt): 0.07

Limit (Plt): 0.65

Maximum Relative

Volt. Change (dmax): 0.00%

Limit (dmax): 4.00%

Relative Steady-state

0.00% Voltage Change (dc):

Limit (dc): 3.00%

Maximum Interval

exceeding 3.00% (dt): 0.00ms

Limit (dt>Lim): 200ms

2015/8/11 14:52:02

Flicker Emission - IEC 61000-3-3, EN 61000-3-3

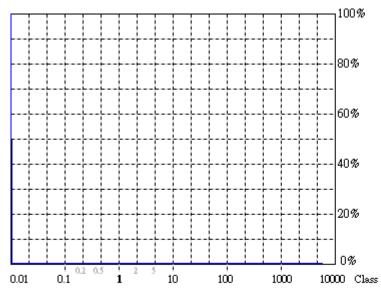
Ums= 229.9 P = 8.639 W Ims = 0.092 pf = 0.409

2 A Range: 230 V V-nom:

TestTime: 30 min (100%)

A7S005T-W120U Test completed, Result: PASSED

HAR-1000 EMC-Retuce


Model: KTPS05-15005U-VI

Observation Period (Tp)	30mins	Test Mode	Operating
Environmental Conditions	20°C, 57% RH, 1009mbar	Tested by	Frank Liao

TEST PARAMETER	MEASUREMENT VALUE	LIMIT	REMARK
P _{st}	0.07	1.0	Pass
P _{lt}	0.07	0.65	Pass
T _{dt} (ms)	0	500	Pass
d _{max} (%)	0	4%	Pass
dc (%)	0	3.3%	Pass

Note: None.

Test result of EN 61000-3-3

0.00 Actual Flicker (Fli):

Short-term Flicker (Pst): 0.07 Limit (Pst): 1.00

Long-term Flicker (Plt): 0.07

Maximum Relative

Limit (Plt):

Volt. Change (dmax): 0.00%

Limit (dmax): 4.00%

Relative Steady-state

0.00% Voltage Change (dc): Limit (dc): 3.00%

Maximum Interval exceeding 3.00% (dt): 0.00ms

Limit (dt>Lim): 200ms

Flicker Emission - IEC 61000-3-3, EN 61000-3-3

Ums= 229.9 P = 9.032 W Ims = 0.096 pf = 0.410

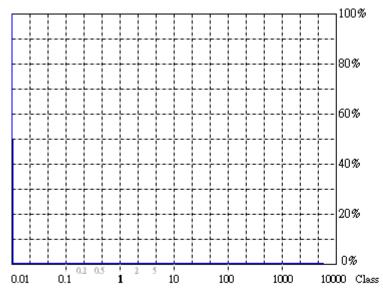
2015/8/11 15:31:48

2 A Range: 230 V V-nom: TestTime: 30 min (100%)

A7S005T-W150U Test completed, Result: PASSED

HAR-1000 PMC-Return

0.65


Model: KTPS05-18033U-VI

Observation Period (Tp)	30mins	Test Mode	Operating
Environmental Conditions	22°C, 56% RH, 1005mbar	Tested by	David Cheng

TEST PARAMETER	MEASUREMENT VALUE	LIMIT	REMARK
P_{st}	0.07	1.0	Pass
P _{lt}	0.07	0.65	Pass
T _{dt} (ms)	0	500	Pass
d _{max} (%)	0	4%	Pass
dc (%)	0	3.3%	Pass

Note: None.

Test result of EN 61000-3-3

Actual Flicker (Fli): 0.00

Short-term Flicker (Pst): 0.07 Limit (Pst): 1.00

Long-term Flicker (Plt): 0.07

Limit (Plt): 0.65

Maximum Relative

Volt. Change (dmax): 0.00% Limit (dmax): 4.00%

Relative Steady-state

0.00% Voltage Change (dc):

Limit (dc): 3.30%

Maximum Interval

exceeding 3.30% (dt): 0.00ms

Limit (dt>Lim): 500ms

2016/1/13 16:34:50

Flicker Emission - IEC 61000-3-3, EN 61000-3-3

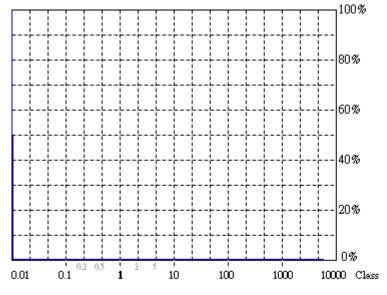
Ums= 229.9 P = 7.731 w Ims = 0.085 pf = 0.394

5 A Range: 230 V V-nom:

TestTime: 30 min (100%)

A75005T-W180U Test completed, Result: PASSED

HAR-1000 EMC-Retuce


Model: KTPS05-24025U-VI

Observation Period (Tp)	30mins	Test Mode	Operating
Environmental Conditions	22°C, 56% RH, 1005mbar	Tested by	David Cheng

TEST PARAMETER	MEASUREMENT VALUE	LIMIT	REMARK
P_{st}	0.07	1.0	Pass
P _{lt}	0.07	0.65	Pass
T _{dt} (ms)	0	500	Pass
d _{max} (%)	d _{max} (%) 0		Pass
dc (%)	0	3.3%	Pass

Note: None.

Test result of EN 61000-3-3

0.00 Actual Flicker (Fli):

Short-term Flicker (Pst): 0.07 Limit (Pst): 1.00

Long-term Flicker (Plt): 0.07

Limit (Plt): 0.65

Maximum Relative

Volt. Change (dmax): 0.00%

Limit (dmax): 4.00%

Relative Steady-state

0.00% Voltage Change (dc): 3.30%

Limit (dc):

Maximum Interval

exceeding 3.30% (dt): 0.00ms

Limit (dt>Lim): 500ms

2016/1/13 19:50:04

Flicker Emission - IEC 61000-3-3, EN 61000-3-3

Ums= 229.9 P = 8.467 W Ims = 0.090 pf = 0.408

5 A Range: 230 V V-nom:

TestTime: 30 min (100%)

A75005T-W240U Test completed, Result: PASSED

IMMUNITY TEST

8.1. GENERAL DESCRIPTION

Product Standard		EN 55024: 2010 + A1: 2015
1 Toddet Standard	Test Type	Minimum Requirement
	IEC 61000-4-2	Electrostatic Discharge - ESD: 8kV air discharge, 4kV Contact discharge, Performance Criterion B
	IEC 61000-4-3	Radio-Frequency Electromagnetic Field Susceptibility Test - RS: 80 ~1000 MHz, 3V/m, 80% AM(1kHz), Performance Criterion A
	IEC 61000-4-4	Electrical Fast Transient/Burst - EFT, AC Power Port: 1kV DC Power Port: 0.5kV Signal Ports and Telecommunication Ports: 0.5kV Performance Criterion B
Basic Standard, Specification, and Performance Criterion required	IEC 61000-4-5	Surge Immunity Test: 1.2/50 µs Open Circuit Voltage, 8/20 µs Short Circuit Current, AC Power Port ~ line to line: 1kV, line to earth (ground): 2kV DC Power Port ~ line to earth: 0.5kV Signal Ports and Telecommunication Ports ~ line to ground: 1kV Performance Criterion B 10/700 µs Open Circuit Voltage, Performance Criterion C
	IEC 61000-4-6	Conducted Radio Frequency Disturbances Test - CS: 0.15 ~ 80 MHz, 3Vrms, 80% AM, 1kHz, Performance Criterion A
	IEC 61000-4-8	Power frequency magnetic field immunity test 50 Hz or 60 Hz, 1A/m, Performance Criterion A
	IEC 61000-4-11	Voltage Dips: i) >95% reduction for 0.5 period, Performance Criterion B ii) 30% reduction for 25 period, Performance Criterion C
		Voltage Interruptions: >95% reduction for 250 period Performance Criterion C

8.2. GENERAL PERFORMANCE CRITERIA DESCRIPTION

Criteria A:	The apparatus shell continues to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. If the manufacturer does not specify the minimum performance level or the permissible performance loss, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
Criteria B:	After test, the apparatus shell continues to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomenon below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance.
	During the test, degradation of performance is however allowed. However, no change of operating state if stored data is allowed to persist after the test. If the manufacturer does not specify the minimum performance level or the permissible performance loss, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
Criteria C:	Temporary loss of function is allowed, provided the functions is self-recoverable or can be restored by the operation of controls by the user in accordance with the manufacturer instructions.
	Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

8.3. ELECTROSTATIC DISCHARGE (ESD)

8.3.1. TEST SPECIFICATION

Basic Standard: IEC 61000-4-2

Discharge Impedance: 330 ohm / 150 pF

Discharge Voltage: Air Discharge: 2; 4; 8 kV (Direct)

Contact Discharge: 2; 4 kV (Direct/Indirect)

Positive & Negative Polarity:

Number of Discharge: Air Discharge: min. 10 times at each test point for each polarity

Contact Discharge: min. 200 times in total

Discharge Mode: Single Discharge

1 second minimum

8.3.2. TEST INSTRUMENT

IMMUNITY SHIELDED ROOM								
Name of Equipment Manufacturer Model Serial Number Calibration								
ESD Generator	Teseq	NSG 437	249	12/15/2015				
Aneroid Barometer	Sato	7610-20	89090	10/12/2015				
Thermo-Hygro meter	TECPEL	DTM-303	080269	04/19/2016				

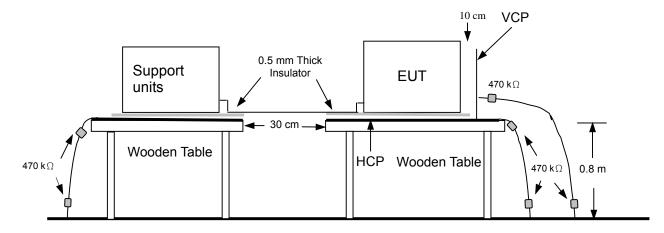
NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

8.3.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-022)

The discharges shall be applied in two ways:

- a) Contact discharges to the conductive surfaces and coupling planes:
 - The EUT shall be exposed to at least 200 discharges, 100 each at negative and positive polarity, at a minimum of four test points. One of the test points shall be subjected to at least 50 indirect discharges to the center of the front edge of the Horizontal Coupling Plane (HCP). The remaining three test points shall each receive at least 50 direct contact discharges. If no direct contact test points are available, then at least 200 indirect discharges shall be applied in the indirect mode. Test shall be performed at a maximum repetition rate of one discharge per second.

Reference No.: T170301D08-E Report No.: T170419D01-E


b) Air discharges at slots and apertures and insulating surfaces: On those parts of the EUT where it is not possible to perform contact discharge testing, the equipment should be investigated to identify user accessible points where breakdown may occur. Such points are tested using the air discharge method. This investigation should be restricted to those area normally handled by the user. A minimum of 10 single air discharges shall be applied to the selected test point for each such area.

The basic test procedure was in accordance with IEC 61000-4-2:

- a) The EUT was located 0.1 m minimum from all side of the HCP (dimensions 1.6m x 0.8m).
- b) The support units were located another table 30 cm away from the EUT, but direct support unit was/were located at same location as EUT on the HCP and keep at a distance of 10 cm with EUT.
- c) The time interval between two successive single discharges was at least 1 second.
- d) Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- e) Air discharges were applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were complete.
- f) At least ten single discharges (in the most sensitive polarity) were applied at the front edge of each **HCP** opposite the center point of each unit of the EUT and 0.1 meters from the front of the EUT. The long axis of the discharge electrode was in the plane of the **HCP** and perpendicular to its front edge during the discharge.
- g) At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane (VCP) in sufficiently different positions that the four faces of the EUT were completely illuminated. The VCP (dimensions 0.5m x 0.5m) was placed vertically to and 0.1 meters from the EUT.

8.3.4. TEST SETUP

Ground Reference Plane

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

NOTE:

TABLE-TOP EQUIPMENT

The configuration consisted of a wooden table 0.8 meters high standing on the **G**round **R**eference **P**lane. The GRP consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A Horizontal Coupling Plane (1.6m x 0.8m) was placed on the table and attached to the GRP by means of a cable with 940k, total impedance. The equipment under test, was installed in a representative system as described in section 7 of IEC 61000-4-2, and its cables were placed on the HCP and isolated by an insulating support of 0.5mm thickness. A distance of 1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

FLOOR-STANDING EQUIPMENT

The equipment under test was installed in a representative system as described in section 7 of IEC 61000-4-2, and its cables were isolated from the Ground Reference Plane by an insulating support of 0.1-meter thickness. The GRP consisted of a sheet of aluminum that is at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system and extended at least 0.5 meters from the EUT on all sides.

8.3.5. TEST RESULTS

Temperature	16°C	Humidity	35% RH
Pressure	1001mbar	Tested By	Jason Lee
Required Pa	ssing Performance		Criterion B

Air Discharge								
Test Levels Results								
Test Points	± 2 kV	± 4 kV	± 8 kV	Pass	Fail Performance Criterion		Observation	
Front	\boxtimes	\boxtimes		\boxtimes		\boxtimes A	□В	Note □ 1 ⊠ 2
Back	\boxtimes	\boxtimes	\square			\boxtimes A	□В	Note □ 1 ⊠ 2
Left	\boxtimes	\boxtimes		\boxtimes		\boxtimes A	□в	Note □ 1 ⊠ 2
Right	\boxtimes	\boxtimes		\boxtimes		\boxtimes A	□В	Note □ 1 ⊠ 2
Тор	\boxtimes			\boxtimes		⊠A	□В	Note □1 ⊠2
Bottom	\boxtimes	\boxtimes				\boxtimes A	□в	Note □ 1 ⊠ 2

Discharge To Horizontal Coupling Plane							
Test Levels Results							
Side of EUT	± 2 kV	± 4 kV	± 6 kV	Pass Fail Performance Criterion Observ			Observation
Front		\boxtimes				⊠A □B	Note ⊠ 1 □ 2
Back	\boxtimes					⊠A □B	Note ⊠1 □ 2
Left						⊠A □B	Note ⊠ 1 □ 2
Right		\boxtimes		\boxtimes		⊠A □B	Note ⊠ 1 □ 2

Discharge To Vertical Coupling Plane							
Test Levels Results							
Side of EUT	± 2 kV	± 4 kV	± 6 kV	Pass	Fail	Performance Criterion	Observation
Front		\boxtimes		\boxtimes		⊠A □B	Note ⊠1
Back		\boxtimes				⊠A □B	Note ⊠1 □ 2
Left						⊠A □B	Note ⊠1
Right		\boxtimes				⊠A □B	Note ⊠ 1 □ 2

NOTE: 1. There was no change compared with initial operation during the test.

^{2.} No Discharge point.

8.4. RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD (RS)

8.4.1. TEST SPECIFICATION

Basic Standard: IEC 61000-4-3

80 MHz ~ 1000 MHz Frequency Range:

3 V/m Field Strength:

Modulation: 1kHz Sine Wave, 80%, AM Modulation

Frequency Step: 1 % of preceding frequency value

Polarity of Antenna: Horizontal and Vertical

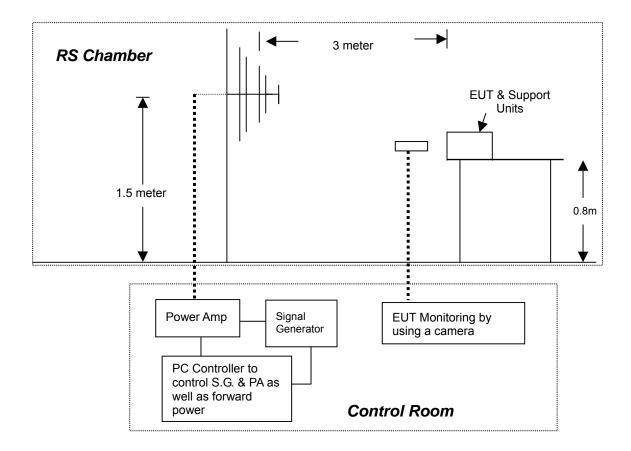
Test Distance: 3 m **Antenna Height:** 1.5m

8.4.2. TEST INSTRUMENT

844 RS Chamber							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
Calibration of Field	N/A	Chamber#RS	80-1000MHz	04/01/2016			
Signal Generator	Agilent	N5181A	MY47421336	12/16/2015			
Electric Field Probe	AR	FL7006	0338955	06/14/2016			
RF Power Meter	Boonton	4242-01-02	14357	03/15/2016			
Amplifier	AR	500W1000A	320994	No Cal. Required			
Direction Coupler	AR	DC6180A	312189	No Cal. Required			
Broadband Antenna	AR	AT1080	311819	No Cal. Required			
Thermo-Hygro meter	TFA	N/A	NO.6	11/02/2015			
Software		Emcware V	er. 2.6.0.16				

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R.= No Calibration required


8.4.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-023)

The test procedure was in accordance with IEC 61000-4-3

- a) The testing was performed in a fully anechoic chamber. The transmit antenna was located at a distance of 3 meters from the EUT.
- b) The frequency range is swept from 80 MHz to 1000 MHz, with the signal 80% amplitude modulated with a 1kHz sine-wave. The rate of sweep did not exceed 1.5 x 10⁻³ decade/s, where the frequency range is swept incrementally, the step size was 1% of preceding frequency value.
- c) The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- d) The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

8.4.4. TEST SETUP

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

NOTE:

TABLETOP EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

FLOOR STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC 61000-4-3 was placed on a non-conductive wood support 0.1 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

845 TEST RESULTS

0.4.J. ILJI KLJULIJ		

Temperature	21°C	Humidity	55% RH
Pressure	1010mbar	Dwell Time	3 sec.
Tested By	Jason Lee	Required Passing Performance	Criterion A

Reference No.: T170301D08-E Report No.: T170419D01-E

Frequency (MHz)	Polarity	Azimuth	Field Strength (V/m)	Performance Criterion		Observation	Result
80 ~ 1000	V&H	0	3	⊠A	□в	Note	PASS
80 ~ 1000	V&H	90	3	⊠A	□в	Note	PASS
80 ~ 1000	V&H	180	3	⊠A	□В	Note	PASS
80 ~ 1000	V&H	270	3	⊠A	□в	Note	PASS

NOTE: There was no change compared with the initial operation during the test.

8.5. ELECTRICAL FAST TRANSIENT (EFT)

8.5.1. TEST SPECIFICATION

Basic Standard: IEC 61000-4-4

Test Voltage: AC Power Port: 1kV

Polarity: Positive & Negative

Impulse Frequency: 5 kHz

Impulse Wave-shape: 5/50 ns

> **Burst Duration:** 15 ms

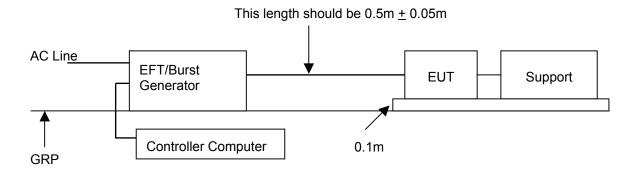
Burst Period: 300 ms

Test Duration: Not less than 1 min.

8.5.2. TEST INSTRUMENT

Immunity Shield Room						
Name of Equipment	Fequipment Manufacturer Model Serial Number Calibration Due					
EMC Test System	Teseq	NSG 3060	1718	11/31/2015		
Capacitive Clamp	EMC-Partner	CN-EFT1000	589	07/21/2016		
Software	WIN 3000 Ver. 1.3.2					

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.


2. N.C.R.= No Calibration required

8.5.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-024)

- a) All types of cables, including their length, and the interface port of the EUT to which they were connected.
- b) Both positive and negative polarity discharges were applied.
- c) The length of the "hot wire" from the coaxial output of the EFT generator to the terminals on the EUT should not exceed 0.5 meter.
- d) The duration time of each test sequential was 1 minute.
- e) The transient/burst waveform was in accordance with IEC 61000-4-4, 5/50ns.

Compliance Certification Services Inc.

8.5.4. TEST SETUP

Reference No.: T170301D08-E Report No.: T170419D01-E

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

NOTE:

TABLETOP EQUIPMENT

The configuration consisted of a wooden table (0.1m high) standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system. A minimum distance of 0.5m was provided between the EUT and the walls of the laboratory or any other metallic structure.

FLOOR STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC 61000-4-4 and its cables. were isolated from the Ground Reference Plane by an insulating support that is 0.1-meter thick. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system.

8.5.5. TEST RESULTS

Temperature	16°C	Humidity	35% RH
Pressure	1001mbar	Tested By	Jason Lee
Required Passing Performance		Criterion B	

Test Point	Polarity	Test Level (kV)	Performan Criterion		Observation	Result
L	+/-	1	⊠A □	В	Note ⊠1 □2	PASS
N	+/-	1	⊠A □	В	Note ⊠1 □2	PASS
L – N	+/-	1	⊠A □	В	Note ⊠1	PASS

NOTE: 1. There was no change compared with initial operation during the test.

8.6. SURGE IMMUNITY TEST

8.6.1. TEST SPECIFICATION

Basic Standard: IEC 61000-4-5

Wave-Shape: Combination Wave

1.2/50 µs Open Circuit Voltage 8/20 µs Short Circuit Current

Test Voltage: AC Power Port~ line to line: 1kV

Surge Input/Output: AC Power Line: L-N

Generator Source Impedance: 2 ohm between networks

Polarity: Positive/Negative

Phase Angle: 0° / 90° / 180° / 270°

Pulse Repetition Rate: 1 time / min. (maximum)

Number of Tests: 5 positive and 5 negative at selected points

8.6.2. TEST INSTRUMENT

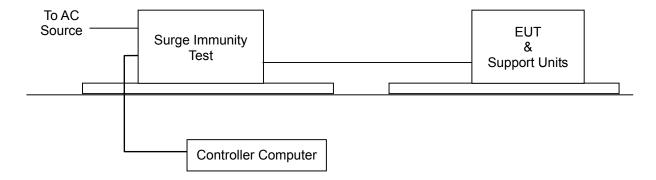
Immunity Shield Room							
Name of Equipment Manufacturer Model Serial Number Calibration							
EMC Immunity Tester	EMC Partner	TRANSIENT 2000	1117	03/03/2016			
CDN	EMC Partner	CDN-UTP8	CDN-UTP8-1505	03/03/2016			
Software	Genecs Ver. 3.27						

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R.= No Calibration required

8.6.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-025)

a) For EUT power supply:


The surge is applied to the EUT power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave. The power cord between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.

- b) For test applied to unshielded un-symmetrically operated interconnection lines of EUT: The surge was applied to the lines via the capacitive coupling. The coupling / decoupling networks didn't influence the specified functional conditions of the EUT. The interconnection line between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.
- c) For test applied to unshielded symmetrically operated interconnection / telecommunication lines of EUT:

The surge was applied to the lines via gas arrestors coupling. Test levels below the ignition point of the coupling arrestor were not specified. The interconnection line between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.

8.6.4. TEST SETUP

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

8.6.5. TEST RESULTS

Temperature	16°C	Humidity	35% RH
Pressure	1001mbar	Tested By	Jason Lee
Required Passing Performance		Criterion B	

Test Point	Polarity	Test Level (kV)	Performance Criterion	Observation	Result
L - N	+/-	1	⊠A □B	Note ⊠1 □ 2	PASS

NOTE: 1. There was no change compared with initial operation during the test.

8.7. CONDUCTED RADIO FREQUENCY DISTURBANCES (CS)

8.7.1. TEST SPECIFICATION

Basic Standard: IEC 61000-4-6

0.15 MHz ~ 80 MHz Frequency Range:

Field Strength: 3 Vrms

> **Modulation:** 1kHz Sine Wave, 80%, AM Modulation

Frequency Step: 1 % of preceding frequency value

Coupled cable: Power Mains, Unshielded

Coupling device: CDN-M2 (2 wires)

8.7.2. TEST INSTRUMENT

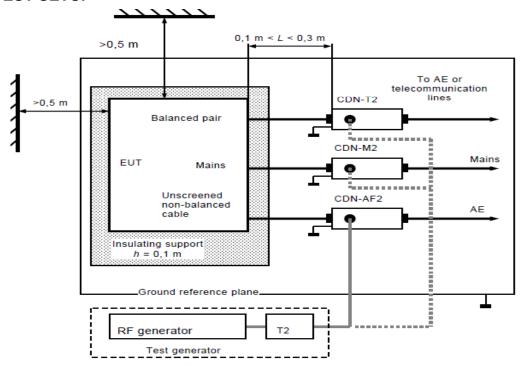
CS Room						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
CWS Generator	EM Test	CWS 500N1.4	P1446143188	03/02/2016		
CDN (EUT)	Teseq	CDN M016	35820	06/15/2016		
CDN	Teseq	CDN M016	35821	06/08/2016		
Attenuator	EMCI	SA3NL	10006F	No Calibration Required		
Software	icd.control Ver. 5.1.9					

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R.= No Calibration required

8.7.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-026)

The EUT shall be tested within its intended operating and climatic conditions.


The test shell performed with the test generator connected to each of the coupling and decoupling devices in turn, while the other non-excited RF input ports of the coupling devices are terminated by a 50-ohm load resistor.

The frequency range was swept from 150 kHz to 80 MHz, using the signal level established during the setting process and with a disturbance signal of 80 % amplitude. The signal was modulated with a 1 kHz sine wave, pausing to adjust the RF signal level or the switch coupling devices as necessary. The sweep rate was 1.5 x 10⁻³ decades/s. Where the frequency range is swept incrementally, the step size was 1 % of preceding frequency value from 150 kHz to 80 MHz.

The dwell time at each frequency was less than the time necessary for the EUT to be exercised, and able to respond. Sensitive frequencies such as clock frequency(ies) and harmonics or frequencies of dominant interest, was analyzed separately.

Attempts was made to fully exercise the EUT during testing, and to fully interrogate all exercise modes selected for susceptibility.

8.7.4. TEST SETUP

Note: 1. The CDNs and / or EM clamp used for real test depends on ports and cables configuration of EUT. 2. The EUT clearance from any metallic obstacles shall be at least 0.5m

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

TABLE-TOP AND FLOOR-STANDING EQUIPMENT

The equipment to be tested is placed on an insulating support of 0.1 meters height above a ground reference plane. All relevant cables shall be provided with the appropriate coupling and decoupling devices at a distance between 0.1 meters and 0.3 meters from the projected geometry of the EUT on the ground reference plane.

8.7.5. TEST RESULTS

Temperature	20°C	Humidity	57% RH
Pressure	1009mbar	Tested By	Jason Lee
Required Passing Performance		Criterion A	

Frequency Band (MHz)	Field Strength (Vrms)	Cable	Injection Method		mance erion	Observa	tion	Result
0.15 ~ 80	3	AC Power Line (0.3m)	CDN-M2	⊠A	□в	Note ⊠1	□2	PASS

NOTE: 1. There was no change compared with initial operation during the test.

8.8. POWER FREQUENCY MAGNETIC FIELD

8.8.1. TEST SPECIFICATION

Basic Standard: IEC 61000-4-8

50Hz Frequency Range:

> Field Strength: 1 A/m

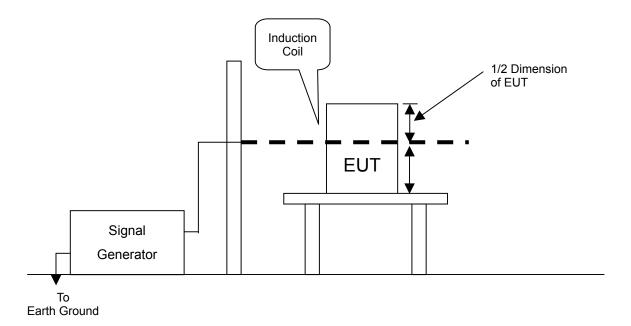
Observation Time: 1 minute

Inductance Coil: Rectangular type, 1mx1m

8.8.2. TEST INSTRUMENT

Immunity Shield Room							
Name of Equipment Manufacturer Model Serial Number				Calibration Due			
Induction Coil Interface	Schaffner	INA 2141	6009	No Cal. Required			
5KVA Power Source	Teseq	5001IX-208-TSQ	1207A03643	No Cal. Required			
AC/DC Clamp Meter	Lutron	CM-9930R	I.200121	05/26/2016			
Magnetic Field Meter	Sypris	4080	0247	03/30/2016			

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.


2. N.C.R.= No Calibration required

8.8.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-027)

- a. The equipment is configured and connected to satisfy its functional requirements. It shall be placed on the GRP with the interposition of a 0.1m-thick insulating support.
- b. The equipment cabinets shall be connected to the safety earth directly on the GRP via the earth terminal of the EUT.
- c. The power supply, input and output circuits shall be connected to the sources of power supply, control and signal.
- d. The cables supplied or recommended by the equipment manufacturer shall be used. 1 meter of all cables used shall be exposed to the magnetic field.

8.8.4. TEST SETUP

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

NOTE:

TABLETOP EQUIPMENT

The equipment shall be subjected to the test magnetic field by using the induction coil of standard dimension (1 m x 1 m). The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

FLOOR-STANDING EQUIPMENT

The equipment shall be subjected to the test magnetic field by using induction coils of suitable dimensions. The test shall be repeated by moving and shifting the induction coils, in order to test the whole volume of the EUT for each orthogonal direction. The test shall be repeated with the coil shifted to different positions along the side of the EUT, in steps corresponding to 50 % of the shortest side of the coil. The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

8.8.5. TEST RESULTS

Temperature	20°C	Humidity	57% RH
Pressure	1009mbar	Tested by	Jason Lee
Required Passing Performance		Criterion A	

DIRECTION	Field Strength (A/m)	Performance Criterion	OBSERVATION	RESULTS
X	1	Α	Note	PASS
Υ	1	Α	Note	PASS
Z	1	А	Note	PASS

NOTE: There was no change compared with the initial operation during the test.

8.9. VOLTAGE DIPS & VOLTAGE INTERRUPTIONS

8.9.1. TEST SPECIFICATION

Basic Standard: IEC 61000-4-11

Test duration time: Minimum three test events in sequence

Interval between event: Minimum 10 seconds

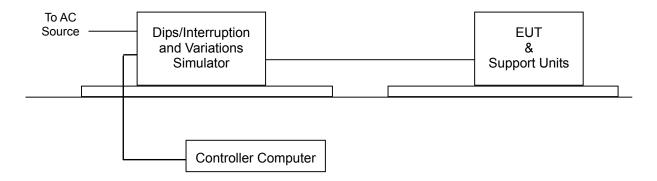
> 0° / 180° **Phase Angle:**

Test cycle: 3 times

8.9.2. TEST INSTRUMENT

Immunity shielded room							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
EMC Immunity Tester	EMC Partner	TRANSIENT 2000	1117	03/03/2016			
AC/DC Clamp Meter	Lutron	CM-9930R	I.200121	05/26/2016			
Software	Genecs Ver. 3.27						

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.


2. N.C.R.= No Calibration required

8.9.3. TEST PROCEDURE (please refer to measurement standard or CCS SOP PA-028)

- 1. The EUT and support units were located on a wooden table, 0.8 m away from ground floor.
- 2. Setting the parameter of tests and then perform the test software of test simulator.
- 3. Conditions changes to occur at 0 degree crossover point of the voltage waveform.
- 4. Recording the test result in test record form.

8.9.4. TEST SETUP

Reference No.: T170301D08-E Report No.: T170419D01-E

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

8.9.5. TEST RESULTS

Temperature	16°C	Humidity	35% RH		
Pressure	1001mbar	Tested By	Jason Lee		
	Criterion B: >95% reduction 0.5 period Criterion C: 30% reduction 25 period & >95% reduction 250 period				

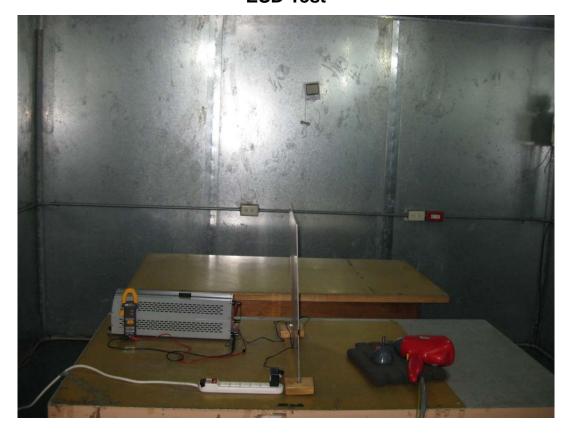
Test Power: 230Vac, 50Hz							
Voltage (% Reduction)	Duration (Period)	Performance Criterion	()nsarvation				
>95	0.5	⊠A □B □C	Note ⊠1 □2	PASS			
30	25	⊠A □B □C	Note ⊠1 □2	PASS			
>95	250	□A ⊠B □C	Note	PASS			

NOTE: 1. There was no change compared with initial operation during and after the test. No unintentional response was found during the test.

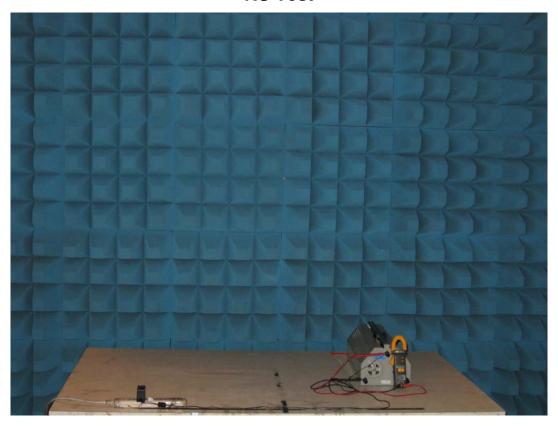
2. EUT shut down, but it could recover automatically afterwards.

PHOTOGRAPHS OF THE TEST CONFIGURATION **CONDUCTED EMISSION TEST**

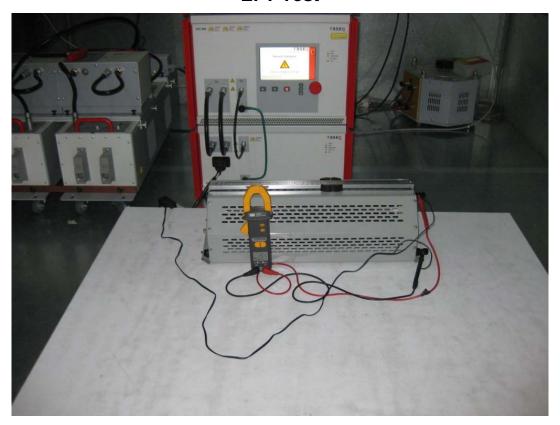
RADIATED EMISSION TEST



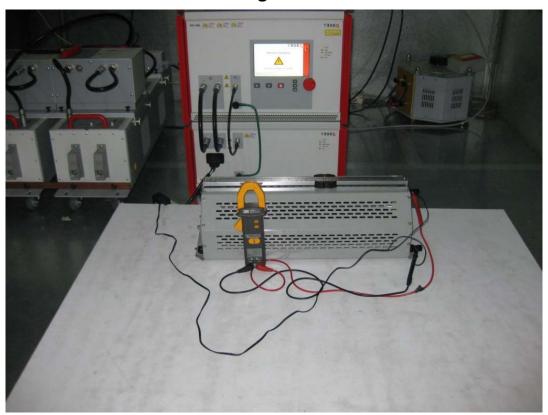
Harmonic & Flicker Test



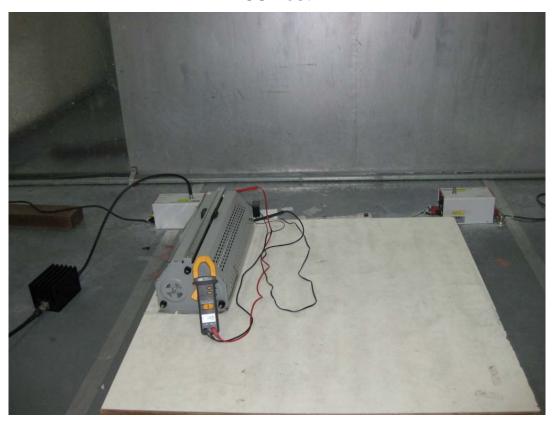
ESD Test



RS Test

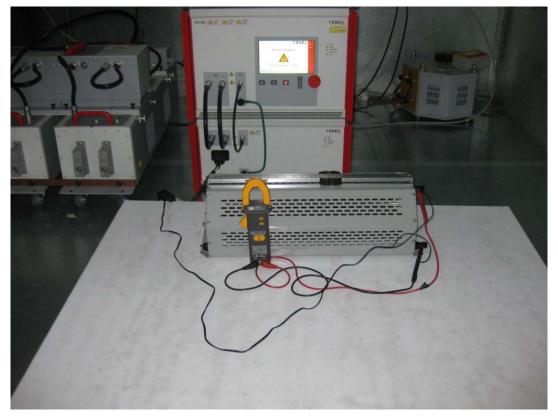


EFT Test



Surge Test

CS Test



PFMF TEST

Voltage Dips / Interruptions Test

