Test Report Application for Declaration of Conformity on Behalf of

KAGA ELECTRONICS (USA) INC

EUT: AC Adapter

Model Number: 1)KTPSxx-yyyyDT-2P- VI (for Desktop Equipment) 2)KTPSxx-yyyyzz-VI (for Direct Plug-In Equipment) (xx can be 18 or 24 for output watt; yyyyy can be 05040, 06035, 06040, 07030, 07530, 09025, 12020, 15016 (When xx=24W) and 05030,06025, 06030, 07025, 07525, 09022, 10019, 11016, 12016, 15013, 16012, 18011, 24008.(When xx = 18W). zz can be WA/EU/UK/AU/CN/KR/MP ;WA is US plug, EU is EU plug, UK is UK plug, AU is AU plug. MP is for Snap-fit plug with AU, UK, CN, EU, KR or US plug)

Prepared for: KAGA ELECTRONICS (USA) INC 780 Montague Expy, Suite 403, San Jose, CA 95131 USA

Report By : Global EMC Standard Tech. Corp. No.3, Baodoucuokeng, Linkou Dist., New Taipei City 244, Taiwan(R.O.C.) Tel : 886-2-2603-5321 Fax : 886-2-2603-5325

Test results given in this report only relate to the specimen(s) tested, measured.

This report is the property of Global EMC Standard Tech. Corp.., and shall not be reproduced, other than in full, without the written consent of Global EMC Standard Tech. Corp..

The client should not use it to claim product endorsement by TAF or any government agencies.

All data in this report are traceable to national standard or international standard.

TABLE OF CONTENTS

DESC	RIPTION	PAGE
1.	CERTIFICATION	3
2.	SUMMARY OF TEST RESULTS	4
2.1	UNCERTAINTY DESCRIPTION	4
3.	GENERAL INFORMATION	5
3.1 3.2 3.3 3.4 3.5 3.6	PRODUCTION DESCRIPTION TEST MODES & EUT COMPONENTS DESCRIPTION CONFIGURATION OF THE TESTED SYSTEM BLOCK DIAGRAM OF CONNECTIONS BETWEEN EUT AND SIMULA LAB AMBIENT TEST FACILITY AUTHORIZATION AND ACCREDITATION	6 8 TORS8 9
4.	CONDUCTED EMISSION MEASUREMENT	10
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	TEST EQUIPMENTS TEST METHOD BLOCK DIAGRAM OF TEST SETUP CONDUCTED EMISSION LIMITS TEST CONFIGURATION ON MEASUREMENT CONDUCTED EMISSION MEASURED PROCEDURE AND DATA OPERATING CONDITIONS OF THE EUT CONDUCTED EMISSION MEASUREMENT RESULTS	10 10 11 11 11 11
5.	RADIATED EMISSION MEASUREMENT	16
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	TEST EQUIPMENT TEST METHOD OPEN AREA TEST SITE SETUP DIAGRAM RADIATED EMISSION LIMIT TEST CONFIGURATION OPERATING CONDITION OF EUT RADIATED EMISSION DATA RADIATED EMISSIONS MEASUREMENT RESULTS	
6.	PHOTOGRAPHS FOR TEST	-
6.1 6.2	TEST PHOTOGRAPHS FOR CONDUCTION TEST PHOTOGRAPHS FOR RADIATED	
7.	PHOTOGRAPHS FOR PRODUCT	25
8.	EMI/EMS REDUCTION METHOD DURING COMPLIANCE TESTING	

1. CERTIFICATION

Applicant : KAGA ELECTRONICS (USA) INC EUT Description : AC Adapter Model Number : 1)KTPSxx-yyyyyDT-2P- VI (for Desktop Equipment) 2)KTPSxx-yyyyyzz-VI (for Direct Plug-In Equipment) (xx can be 18 or 24 for output watt; yyyyy can be 05040, 06035, 06040, 07030, 07530, 09025, 12020, 15016 (When xx=24W) and 05030,06025, 06030, 07025, 07525, 09022, 10019, 11016, 12016, 15013, 16012, 18011, 24008.(When xx = 18W). zz can be WA/EU/UK/AU/CN/KR/MP ;WA is US plug, EU is EU plug, UK is UK plug, AU is AU plug. MP is for Snap-fit plug with AU, UK, CN, EU, KR or US plug) Brand Name : KAGA Serial Number : N/A

MEASUREMENT PROCEDURES USED:

☑ CFR 47, Part 15	Radio Frequency Device Subpart B Unintentional Radiators Class B
☑ CISPR 22 3 rd Edition:1997	Limits and methods of measurement of radio disturbance Characteristics of information technology equipment: 1997
☑ ANSI C63.4	Methods of Measurements of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the range of 9kHz To 40GHz: 2009
☑ Canadian ICES-003	Information Technology Equipment (ITE) - Limits and methods of
issue 6 (2016)	measurement, CAN/CSA-CISPR22-10
☑ CISPR 22 6 th Edition:2008	Limits and methods of measurement of radio disturbance Characteristics of information technology equipment: 2008

THE MEASUREMENT SHOWN IN THE ATTACHMENT WAS MADE IN ACCORDANCE WITH THE PROCEDURES INDICATED, AND THE MAXIMUM ENERGY EMITTED BY THE EQUIPMENT WAS FOUND TO BE WITHIN THE ABOVE LIMITS APPLICABLE.

Sample Received Data Date of Test Issue Date

: <u>June 26, 2015</u> : <u>July 07, 2015</u> – <u>August 03, 2015</u> : May 26, 2016

In order to ensure the quality and accuracy of this document, the contents have been thoroughly reviewed by the following qualified personnel from Global EMC Standard Tech. Corp. Lab.

Documented By :

Tested By :

Griv Isa

Mandy Chen / Report Author

Eric Tsai / eng. Dept. Supervisor

Approved By : r Tony Tsai / Director

2. SUMMARY OF TEST RESULTS

The worst emission data was found as following

STANDARD	TEST ITEM	TEST RESULT	REMARKS
(1)FCC Part 15 (2)CISPR 22 3 rd Edition:1997	Conducted emission (Mode 47)	PASS	The worst emission frequency is <u>0.1706 MHz</u> . And minimum passing margin is <u>-5.56 dB</u> . The measurement uncertainty is 3.88 dB.
(3)Canadian ICES-003 issue 6 (2016) Class B (4)CISPR 22 6 th Edition:2008	Radiated emission (Mode 47)		The worst emission frequency is <u>55.8500 MHz</u> at <u>Vertical.</u> And minimum passing margin is <u>-8.95 dB</u> . Height of antenna is <u>100 cm</u> . Angle of turntable is <u>113°</u> . The measurement uncertainty is 4.10 dB.

2.1UNCERTAINTY DESCRIPTION

According to CISPR 16-4-2,

The measure level is compliance with the limit if

Lm < Llim and Lm + U(Lm)< Llim+Ucispr= Leff

Where,

Ucispr= Uncertainty value specified in Table 1 of CISPR 16-4-2

Measureme	Ucispr	
Conducted disturbance (mains port)	(150 kHz – 30 MHz)	3.6 dB
Radiated disturbance (OATS or ATS)	(30 MHz – 1000 MHz)	5.2 dB

Lm = Measure value

Llim = Emission limit level

U(Lm) = Uncertainty value of test laboratory

Leff = Effective emission limit level

The above stated condition will be taking as a criterion for pass/fail determination.

3. GENERAL INFORMATION

3.1 PRODUCTION DESCRIPTION

Product Name	: AC Adapter
Model Number	 1)KTPSxx-yyyyDT-2P- VI (for Desktop Equipment) 2)KTPSxx-yyyyyzz-VI (for Direct Plug-In Equipment) (xx can be 18 or 24 for output watt; yyyyy can be 05040, 06035, 06040, 07030, 07530, 09025, 12020, 15016 (When xx=24W) and 05030,06025, 06030, 07025, 07525, 09022, 10019, 11016, 12016, 15013, 16012, 18011, 24008.(When xx = 18W). zz can be WA/EU/UK/AU/CN/KR/MP ;WA is US plug, EU is EU plug, UK is UK plug, AU is AU plug. MP is for Snap-fit plug with AU, UK, CN, EU, KR or US plug)
Serial Number	÷ N/A
Brand Name	: KAGA
Applicant	[:] KAGA ELECTRONICS (USA) INC
Address	[:] 780 Montague Expy, Suite 403, San Jose, CA 95131 USA
Manufacturer	[:] Boayang Electronics Co., Ltd.
Address	: Di Feng Gong Yu Qu 2 Hao Xiasha Liuwu Village, Shipai Town Dong Guan City P. R. China
Power Supply	: KTPS18-yyyyyDT-2P- VI and KTPS18-yyyyyzz-VI Input :100-240Vac, 50- 60Hz, 0.48A KTPS24-yyyyyDT-2P- VI and KTPS24-yyyyyzz-VI Input :100-240Vac, 50- 60Hz, 0.58A

3.2 TEST MODES & EUT COMPONENTS DESCRIPTION

EUT: AC Adapter, M/N: 1)KTPSxx-yyyyyDT-2P- VI (for Desktop Equipment) 2)KTPSxx-yyyyyzz-VI (for Direct Plug-In Equipment)

(xx can be 18 or 24 for output watt; yyyyy can be 05040, 06035, 06040, 07030, 07530, 09025, 12020, 15016 (When xx=24W) and 05030,06025, 06030, 07025, 07525, 09022, 10019, 11016, 12016, 15013, 16012, 18011, 24008.(When xx = 18W). zz can be WA/EU/UK/AU/CN/KR/MP ;WA is US plug, EU is EU plug, UK is UK plug, AU is AU plug. MP is for Snap-fit plug with AU, UK, CN, EU, KR or US plug)

Test Mode	est Mode Mode 1- Full Load (Pre- Scan Mode)		l Load (Pre- Mode)	Mode 3- Full Load (Pre- Scan Mode)	
Test Model Number)35DT-2P-VI	KTPS24-06040DT-2P-VI	
To at Max Is	Mode 4- Full Load (Pre-		I Load (Pre-	Mode 6- Full Load (Pre-	
Test Mode	Scan Mode)	Scan	•	Scan Mode)	
Test Model Number	KTPS24-07030DT-2P-VI	KTPS24-075	530DT-2P-VI	KTPS24-09025DT-2P-VI	
Test Mede	Mode 7- Full Load (Pre-	Mode 8- Ful	I Load (Pre-	Mode 9- Full Load (Worst	
Test Mode	Scan Mode)	Scan	•	Case)	
Test Model Number	KTPS24-12020DT-2P-VI	KTPS24-150	16DT-2P-VI	KTPS24-24010DT-2P-VI	
Test Mode	Mode 10- Full Load (Pre-	Mode 11- Fu	II Load (Pre-	Mode 12- Full Load (Pre-	
Test Mode	Scan Mode)	Scan	Mode)	Scan Mode)	
Test Model Number	KTPS24-48005DT-2P-VI	KTPS18-050	30DT-2P-VI	KTPS18-06025DT-2P-VI	
Test Mode	Mode 13- Full Load (Pre-	Mode 14- Fu	II Load (Pre-	Mode 15- Full Load (Pre-	
Test Mode	Scan Mode)	Scan	Mode)	Scan Mode)	
Test Model Number	KTPS18-06030DT-2P-VI	KTPS18-070	25DT-2P-VI	KTPS18-07525DT-2P-VI	
Test Mode	Mode 17- Full Load (Pre-	Scan Mode)	Mode 18- Fu	ull Load (Pre-Scan Mode)	
Test Model Number	KTPS18-09022DT-			518-10019DT-2P-VI	
Test Mode	•		•	Mode 21- Full Load (Pre-	
	Scan Mode)	Scan		Scan Mode)	
Test Model Number	KTPS18-11016DT-2P-VI	KTPS18-120	016DT-2P-VI	KTPS18-15013DT-2P-VI	
Test Mode	Mode 22- Full Load (Pre-	Mode 23- Fu	•	Mode 24- Full Load	
	Scan Mode)	Scan Mode)		(Worst Case)	
Test Model Number	KTPS18-16012DT-2P-VI KTPS18-18011DT-2P-VI			KTPS18-24008DT-2P-VI	
Test Mode	Mode 25- Full Load (Pre-		II Load (Pre-	Mode 27- Full Load (Pre-	
	Scan Mode)	Scan		Scan Mode)	
Test Model Number	KTPS24-05040WA-VI		6035WA-VI	KTPS24-06040WA-VI	
Test Mode	Mode 28- Full Load (Pre-	Mode 29- Fu	•	Mode 30- Full Load (Pre-	
	Scan Mode)	Scan Mode)		Scan Mode)	
Test Model Number	KTPS24-07030WA-VI		7530WA-VI	KTPS24-09025WA-VI	
Test Mode	Mode 31- Full Load (Pre-	Mode 32- Full Load (Pre-		Mode 33- Full Load	
	Scan Mode)	Scan		(Worst Case)	
Test Model Number	KTPS24-12020WA-VI		5016WA-VI	KTPS24-24010WA-VI	
Test Mode	Mode 34- Full Load (Pre-	Mode 35- Fu	•	Mode 36- Full Load	
Teet Medal Namehor	Scan Mode)	Scan		(Worst Case)	
Test Model Number	KTPS24-48005WA-VI		5030WA-VI	KTPS18-06025WA-VI	
Test Mode	•			Mode 39- Full Load (Pre-	
Teet Medel Number	Scan Mode)	Scan		Scan Mode)	
Test Model Number	KTPS18-06030WA-VI	KTPS18-07025WA-VI Mode 41- Full Load (Pre-		KTPS18-07525WA-VI	
Test Mode	Mode 40- Full Load (Pre-		•	Mode 42- Full Load (Pre-	
Tost Model Number	Scan Mode)			Scan Mode)	
Test Model Number	KTPS18-09022WA-VI		0019WA-VI	KTPS18-11016WA-VI	
Test Mode	Mode 43- Full Load (Pre-	Mode 44- Fu	•	Mode 45- Full Load (Pre-	
	Scan Mode)	Scan		Scan Mode)	
Test Model Number	KTPS18-12016WA-VI	KTPS18-1	5013WA-VI	KTPS18-16012WA-VI	
Test Mode	Mode 46- Full Load (Pre-	Scan Mode)	Mode 47-	Full Load (Worst Case)	
Test Model Number	KTPS18-18011W	A-VI	KTF	PS18-24008WA-VI	

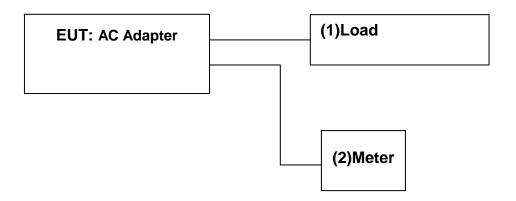
Note:

- 1. According to pre-scan data, we determine the data (Mode 33, 47) shown in this test report, which reflects the worst-case data for each operation mode..
- 2. The EUT has serial model numbers for the requirement of marketing.
- The difference of model numbers are shown as below:

Model No	Input Rated	Output Rated	Transformer	PCB
KTPS24-05040DT-2P-VI	100-240Vac, 50-	5Vdc, 4.0A, 20W	T1	SR
KTPS24-05040WA-VI	60Hz, 0.58A			
KTPS24-06035DT-2P-VI		5.9Vdc, 3.5A, 20.65W		SR
KTPS24-06035WA-VI				
KTPS24-06040DT-2P-VI		5.9Vdc, 4.0A, 23.6W		SR
KTPS24-06040WA-VI				
KTPS24-07030DT-2P-VI		7.0Vdc, 3.0A, 21W	T2	SR
KTPS24-07030WA-VI				
KTPS24-07530DT-2P-VI		7.5Vdc, 3.0A, 22.5W		SR
KTPS24-07530WA-VI				
KTPS24-09025DT-2P-VI		9.0Vdc, 2.5A, 22.50W	Т8	SBD
KTPS24-09025WA-VI				
KTPS24-12020DT-2P-VI		12Vdc, 2.0A, 24W	ТЗ	SBD
KTPS24-12020WA-VI				
KTPS24-15016DT-2P-VI		15Vdc, 1.6A, 24W	T4	SBD
KTPS24-15016WA-VI				
KTPS24-24010DT-2P-VI		24Vdc, 1.0A, 24W	Т5	SBD
KTPS24-24010WA-VI				
KTPS24-48005DT-2P-VI		48Vdc, 0.5A, 24W	Т6	SBD
KTPS24-48005WA-VI				
KTPS18-05030DT-2P-VI	100-240Vac, 50-	5Vdc, 3.0A, 15W	T7	SBD
KTPS18-05030WA-VI	60Hz, 0.48A			
KTPS18-06025DT-2P-VI		5.9Vdc, 2.5A, 14.75W		SBD
KTPS18-06025WA-VI	-			
KTPS18-06030DT-2P-VI		5.9Vdc, 3.0A, 17.7W		SBD
KTPS18-06030WA-VI	-			
KTPS18-07025DT-2P-VI		7.0Vdc, 2.5A, 17.5W	Т8	SBD
KTPS18-07025WA-VI	-		-	
KTPS18-07525DT-2P-VI		7.5Vdc, 2.5A, 18.75W		SBD
KTPS18-07525WA-VI	-		-	
KTPS18-09022DT-2P-VI		9.0Vdc, 2.2A, 19.8W		SBD
KTPS18-09022WA-VI	4			
KTPS18-10019DT-2P-VI		10Vdc, 1.9A, 19W	Т3	SBD
KTPS18-10019WA-VI	4		4	
KTPS18-11016DT-2P-VI		11Vdc, 1.6A, 17.60W		SBD
KTPS18-11016WA-VI	4		4	
KTPS18-12016DT-2P-VI		12Vdc, 1.6A, 19.2W		SBD
KTPS18-12016WA-VI				

Model No	Input Rated	Output Rated	Transformer	PCB
KTPS18-15013DT-2P-VI	100-240Vac, 50-	15Vdc, 1.3A, 19.5W	Т4	SBD
KTPS18-15013WA-VI	60Hz, 0.48A			
KTPS18-16012DT-2P-VI	100-240Vac, 50-	16Vdc, 1.2A, 19.2W		SBD
KTPS18-16012WA-VI	60Hz, 0.48A			
KTPS18-18011DT-2P-VI	100-240Vac, 50-	18Vdc, 1.1A, 19.8W		SBD
KTPS18-18011WA-VI	60Hz, 0.48A			
KTPS18-24008DT-2P-VI	100-240Vac, 50-	24Vdc, 0.8A, 19.2W	Т5	SBD
KTPS18-24008WA-VI	60Hz, 0.48A			

3. This report was based on GesTek report #1512017F-01, which update Standard because of the requirement of marketing.


3.3 CONFIGURATION OF THE TESTED SYSTEM

The FCC IDs/Types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards, which have grants) are:

Item	Device	No.	Configuration
1	Load		Full Load: 24 Ω for mode 33 Full Load: 30 Ω for mode 47
2	Meter		0-5A

Note: All the peripherals above were selected specifically after confirming that there is no impact on test results.

3.4 BLOCK DIAGRAM OF CONNECTIONS BETWEEN EUT AND SIMULATORS

3.5 LAB AMBIENT

Items	Range Requirement
Temperature (°C)	10-40
Humidity (%RH)	10-90
Barometric pressure (mbar)	860-1060

3.6 TEST FACILITY AUTHORIZATION AND ACCREDITATION

Global EMC Standard Tech. Corp. is accredited in respect of laboratory and the accreditation criteria is ISO/IEC 17025: 2005.

AUTHORIZATION		
FCC SITE DESCRIPTION	Aug. 10, 1995 /Aug. 25, 1998 File on FCC Engineering Laboratory Federal Communications Commission Designation Number: TW1031, TW1032	

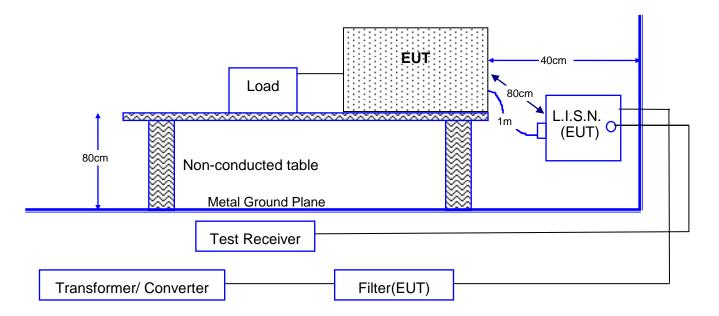
ACCREDITATION			
Taiwan Accreditation Foundation (TAF)	Recognized by the Council of Taiwan Accreditation Foundation and confirmed to meet the requirements of ISO/IEC 17025. Registration No.: 1082 Registration on TAF effective through Sep. 18, 2018		

4. CONDUCTED EMISSION MEASUREMENT 4.1 TEST EQUIPMENTS

Item	Instrument	Manufacturer	Model	S/N or Version	Next Cal. Date		
1	TEST RECEIVER	RS	ESCS30	100393	2016.04.16		
2	L.I.S.N.(EUT)	RS	ENV216	100108	2016.05.11		
3	CABLE	GTK	N/A	GTK-E-A154-01	2016.01.09		
4	Software	FARAD	EZ-EMC	2A1.1(USB)	N/A		

Note: 1. All equipments are calibrated and will be valid only for a period of 1 year.

2. The test was performed at GTK Shielded Room B5.


4.2 TEST METHOD

According to CISPR 22 3rd Edition:1997

ANSI C63.4: 2009

CISPR 22 6th Edition:2008

4.3 BLOCK DIAGRAM OF TEST SETUP

Note: This is a representative setup diagram for Table-top EUT.

For Floor-standing EUT, the table will be removed with all others setup condition remain the same.

Frequency	Voltage limits dB(µV)				
	Class B				
MHz	QUASI-PEAK	AVERAGE			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5.0	56	46			
5.0 to 30	60	50			

4.4 CONDUCTED EMISSION LIMITS

Remarks : In the Above Table, the tighter limit applies at the band edges.

4.5 TEST CONFIGURATION ON MEASUREMENT

The equipments that are listed in section 4.1 are installed on Conducted Power Line Test in order to meet the requirement of the Commission and operating in a manner, which tends to maximize its emission characteristics in a normal application.

The device under test, installed in a representative system as described in section 4.3, was placed on a non-conductive table whose total height equal to 80cm. Powered from one L.I.S.N. which signal output to receiver, and the other peripherals was powered from another L.I.S.N. which signal output was terminated by 50Ω .

4.6 CONDUCTED EMISSION MEASURED PROCEDURE AND DATA

The measurement range of conducted emission, which is from <u>0.15 MHz to 30 MHz</u>, was scan for peak emission curve of all the test modes. The worst mode is then measured using an average and/or quasi peak detector and record at least the disturbance levels and the frequencies of the six highest disturbances. The final measurement value is equal to the receiver reading plus the correction factor. If AMN insertion loss is more than 0.5dB, automatically the receiver will add the correction factor to the reading level.

4.7 OPERATING CONDITIONS OF THE EUT

The exercise program used during conducted emission measurement was designed to exercise the EUT in a manner similar to a typical use. The exercise sequence is listed as below:

- 1. Setup the EUT and simulators as shown on 4.3.
- 2. Turn on the power of all equipments.
- 3. Start test.

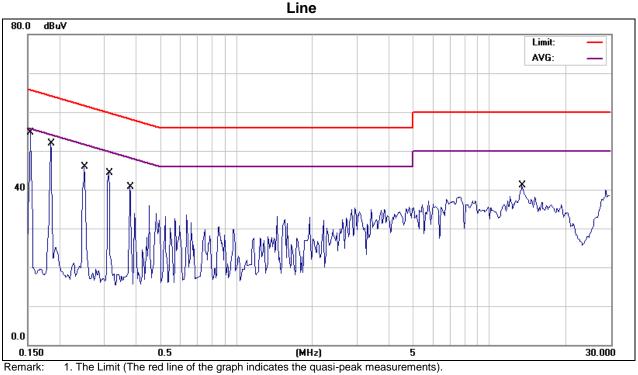
4.8 CONDUCTED EMISSION MEASUREMENT RESULTS

Date of Test	July 07, 2015	Temperature	26 ℃
EUT	AC Adapter	Humidity	59 %
Test Mode	Mode 47	Display Pattern	N/A
Test Power Supply	AC 120V/60Hz		

	Line						
No.	Frequency MHz	Reading Level dBµV	Factor dB	Measurement dBµV	Limit dBµV	Over Limit dB	Detector
1	0.1535	39.41	9.67	49.08	65.81	-16.73	QP
2	0.1535	16.75	9.67	26.42	55.81	-29.39	AVG
3	★ 0.1846	46.47	9.67	56.14	64.28	-8.14	QP
4	0.1846	28.74	9.67	38.41	54.28	-15.87	AVG
5	0.2521	39.79	9.66	49.45	61.69	-12.24	QP
6	0.2521	25.93	9.66	35.59	51.69	-16.10	AVG
7	0.3138	33.81	9.66	43.47	59.87	-16.40	QP
8	0.3138	19.81	9.66	29.47	49.87	-20.40	AVG
9	0.3805	31.10	9.65	40.75	58.27	-17.52	QP
10	0.3805	25.32	9.65	34.97	48.27	-13.30	AVG
11	13.5094	31.03	10.03	41.06	60.00	-18.94	QP
12	13.5094	24.88	10.03	34.91	50.00	-15.09	AVG

Remarks :

1. All readings are Quasi-peak and Average values.


2. Measurement = Reading + Factor (Could have ± 0.01 tolerance due to computer automatically round off calculation).

3. Over Limit (Margin Value)=Measurement level-Limit value.

4. Factor = L.I.S.N. insertion loss + cable loss

5. " \bigstar " means that this data is the worse case measurement level.

6. The measurement uncertainty is 3.88 dB.

2. The AVG (The purple line of the graph indicates the average measurements).

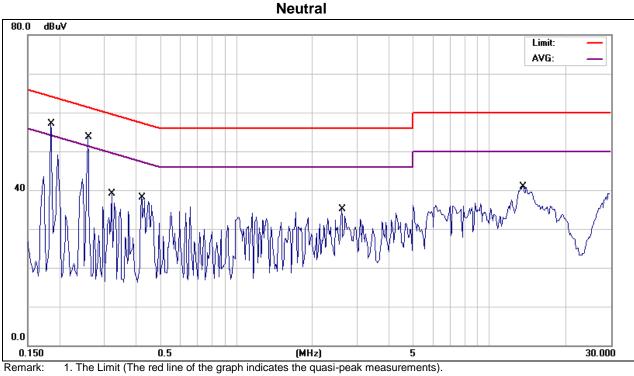
Date of Test	July 07, 2015	Temperature	26 ℃
EUT	AC Adapter	Humidity	59 %
Test Mode	Mode 47	Display Pattern	N/A
Test Power Supply	AC 120V/60Hz	·	

Neutral

No.	Frequency MHz	Reading Level dBµV	Factor dB	Measurement dBµV	Limit dBµV	Over Limit dB	Detector
1	★ 0.1853	45.55	9.69	55.24	64.24	-9.00	QP
2	0.1853	28.65	9.69	38.34	54.24	-15.90	AVG
3	0.2592	39.86	9.69	49.55	61.46	-11.91	QP
4	0.2592	27.00	9.69	36.69	51.46	-14.77	AVG
5	0.3219	29.42	9.69	39.11	59.66	-20.55	QP
6	0.3219	23.91	9.69	33.60	49.66	-16.06	AVG
7	0.4234	28.42	9.68	38.10	57.38	-19.28	QP
8	0.4234	25.02	9.68	34.70	47.38	-12.68	AVG
9	2.6148	25.33	9.81	35.14	56.00	-20.86	QP
10	2.6148	22.10	9.81	31.91	46.00	-14.09	AVG
11	13.6070	30.83	10.13	40.96	60.00	-19.04	QP
12	13.6070	16.91	10.13	27.04	50.00	-22.96	AVG

Remarks :

1. All readings are Quasi-peak and Average values.


2. Measurement = Reading + Factor (Could have ± 0.01 tolerance due to computer automatically round off calculation).

3. Over Limit (Margin Value)=Measurement level-Limit value.

4. Factor = L.I.S.N. insertion loss + cable loss

5. " \bigstar " means that this data is the worse case measurement level.

6. The measurement uncertainty is 3.88 dB.

2. The AVG (The purple line of the graph indicates the average measurements).

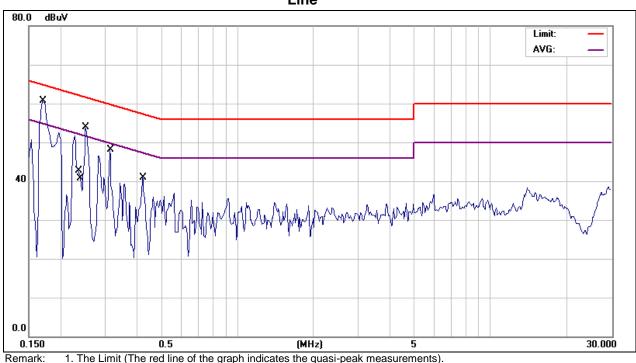
Date of Test	July 15, 2015	Temperature	26 ℃
EUT	AC Adapter	Humidity	59 %
Test Mode	Mode 33	Display Pattern	N/A
Test Power Supply	AC 120V/60Hz		

Line

No.	Frequency MHz	Reading Level dBµV	Factor dB	Measurement dBµV	Limit dBµV	Over Limit dB	Detector
1	★ 0.1706	49.70	9.67	59.37	64.93	-5.56	QP
2	0.1706	35.12	9.67	44.79	54.93	-10.14	AVG
3	0.2376	39.88	9.67	49.55	62.18	-12.63	QP
4	0.2376	24.66	9.67	34.33	52.18	-17.85	AVG
5	0.2421	39.92	9.67	49.59	62.02	-12.43	QP
6	0.2421	24.98	9.67	34.65	52.02	-17.37	AVG
7	0.2516	44.29	9.66	53.95	61.70	-7.75	QP
8	0.2516	35.63	9.66	45.29	51.70	-6.41	AVG
9	0.3141	38.53	9.66	48.19	59.86	-11.67	QP
10	0.3141	32.25	9.66	41.91	49.86	-7.95	AVG
11	0.4234	31.26	9.65	40.91	57.38	-16.47	QP
12	0.4234	25.14	9.65	34.79	47.38	-12.59	AVG

Remarks :

1. All readings are Quasi-peak and Average values.


2. Measurement = Reading + Factor (Could have ±0.01 tolerance due to computer automatically round off calculation).

3. Over Limit (Margin Value)=Measurement level-Limit value.

4. Factor = L.I.S.N. insertion loss + cable loss

5. " \star " means that this data is the worse case measurement level.

6. The measurement uncertainty is 3.88 dB.

Line

1. The Limit (The red line of the graph indicates the quasi-peak measurements).

2. The AVG (The purple line of the graph indicates the average measurements).

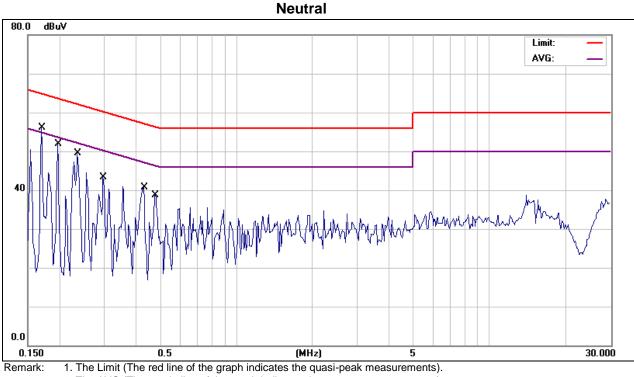
Date of Test	July 15, 2015	Temperature	26 ℃
EUT	AC Adapter	Humidity	59 %
Test Mode	Mode 33	Display Pattern	N/A
Test Power Supply	AC 120V/60Hz		

Neutral

No.	Frequency MHz	Reading Level dBµV	Factor dB	Measurement dBµV	Limit dBµV	Over Limit dB	Detector
1	★ 0.1697	48.85	9.70	58.55	64.98	-6.43	QP
2	0.1697	34.38	9.70	44.08	54.98	-10.90	AVG
3	0.1939	37.81	9.69	47.50	63.87	-16.37	QP
4	0.1939	22.39	9.69	32.08	53.87	-21.79	AVG
5	0.2352	40.01	9.69	49.70	62.26	-12.56	QP
6	0.2352	26.21	9.69	35.90	52.26	-16.36	AVG
7	0.2984	33.71	9.69	43.40	60.29	-16.89	QP
8	0.2984	26.80	9.69	36.49	50.29	-13.80	AVG
9	0.4313	31.05	9.68	40.73	57.23	-16.50	QP
10	0.4313	25.71	9.68	35.39	47.23	-11.84	AVG
11	0.4781	29.00	9.68	38.68	56.37	-17.69	QP
12	0.4781	23.39	9.68	33.07	46.37	-13.30	AVG

Remarks :

1. All readings are Quasi-peak and Average values.


2. Measurement = Reading + Factor (Could have ± 0.01 tolerance due to computer automatically round off calculation).

3. Over Limit (Margin Value)=Measurement level-Limit value.

4. Factor = L.I.S.N. insertion loss + cable loss

5. " \bigstar " means that this data is the worse case measurement level.

6. The measurement uncertainty is 3.88 dB.

2. The AVG (The purple line of the graph indicates the average measurements).

5. RADIATED EMISSION MEASUREMENT

5.1 TEST EQUIPMENT

The following test equipments are used during the radiated emission tests:

Item	Instrument	Manufacturer	Model	S/N or Version	Next Cal. Date
1	TEST RECEIVER	RS	ESCS30	849650/023	2016.05.02
2	SPECTRUM	ADVANTEST	R3172	150800149	2016.02.05
3	PRE-AMPLIFIER	HP	8447D	2944A08273	2015.09.30
4	BILOG ANTENNA	SCHAFFNER	CBL6112B	2833	2016.06.30
5	CABLE	PEWC	CFD400-NL	GTK-E-A408-01	2016.02.25
6	Software	FARAD	EZ-EMC	2A1.1(USB)	N/A

Note: 1. All equipments are calibrated and will be valid only for a period of 1 year.

2. The test was performed at GTK Open Site B2.

5.2 TEST METHOD

According to CISPR 22 3rd Edition:1997 CISPR 22 6th Edition:2008

5.3 OPEN AREA TEST SITE SETUP DIAGRAM

Note: This is a representative setup diagram for Table-top EUT. For Floor-standing EUT, the table will be removed with all others setup condition remain the same.

5.4 RADIATED EMISSION LIMIT

Frequency	CISPR Class B		
Frequency	Distance	Field Strength	
MHz	Meter	dB(µV/m)	
30 to 230	10	30	
230 to 1000	10	37	

Remark :1. The tighter limit shall apply at the edge between two frequency bands.

2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

5.5 TEST CONFIGURATION

The equipments which are listed 5.1 are installed on Radiated Emission Test to meet the Commission requirement and operating in a manner which tends to maximize its emission characteristics in a normal application.

The device under test, installed in a representative system as described in section 5.3., was placed on a non-conductive table whose total height equaled 80 cm. This table can be rotated 360 degree. The measurement antenna was mounted to a non-conductive mast capable of moving the antenna vertically. Antenna height was varied from 1 meter to 4 meters and the system under test was rotated from 0 degree through 360 degrees relative to the antenna position and polarization (Horizontal and Vertical). Also the I/O cable position was investigated to find the maximum emission condition.

5.6 OPERATING CONDITION OF EUT

Same as section 4.7.

5.7 RADIATED EMISSION DATA

According 47CFR PART 15 subpart B section 15.33(b)(1), the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a radiated emission limit is specified, up to the frequency shown in the following table:

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement rang (MHz)
Below 1.705	30
1.705-108	1000
108-500	2000
500-1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

Remark: The highest tested frequency is generated by the <u>150 kHz</u>. At least, the upper frequency of measurement range is <u>1GHz</u>.

5.7.1 30 MHz to 1 GHz

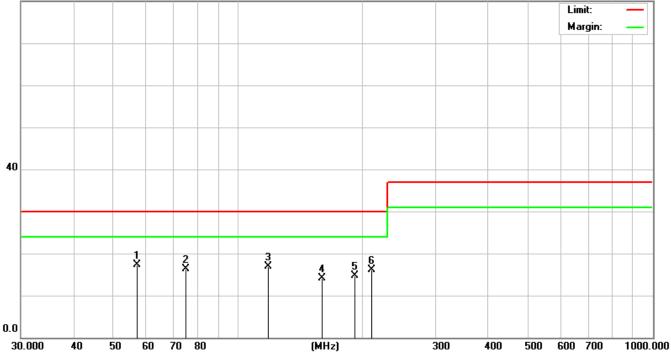
The measurement range of radiated emission, which is from <u>30 MHz to 1 GHz</u>, was investigated. All readings are quasi-peak values with a resolution bandwidth of 120 kHz. The initial step in collecting radiated emission data is a spectrum analyzer peak scans of the measurement range for all the test modes and then use test receiver for final measurement and record at least the disturbance levels and the frequencies of the six highest disturbances. Then the worst modes were reported the following data pages.

5.8 RADIATED EMISSIONS MEASUREMENT RESULTS

Date of Test	August 03, 2015	Temperature	25 deg/C
EUT	AC Adapter	Humidity	60 %RH
Working Cond.	Mode 33	Display Pattern	N/A
Antenna distance	10m at Horizontal	Test Frequency Range	30-1000MHz
Test Power Supply	AC 120V/60Hz		

No.	Frequency MHz	Reading Level dBµV	Factor dB	Measurement dBµV/m	Limit dBµV/m	Over Limit dB	Detector
1	★56.9600	36.63	-19.30	17.33	30.00	-12.67	QP
2	75.0000	35.12	-18.82	16.30	30.00	-13.70	QP
3	118.3200	30.20	-13.37	16.83	30.00	-13.17	QP
4	160.3000	28.52	-14.48	14.04	30.00	-15.96	QP
5	191.3200	29.63	-14.86	14.77	30.00	-15.23	QP
6	209.3600	30.10	-13.97	16.13	30.00	-13.87	QP

Remarks:

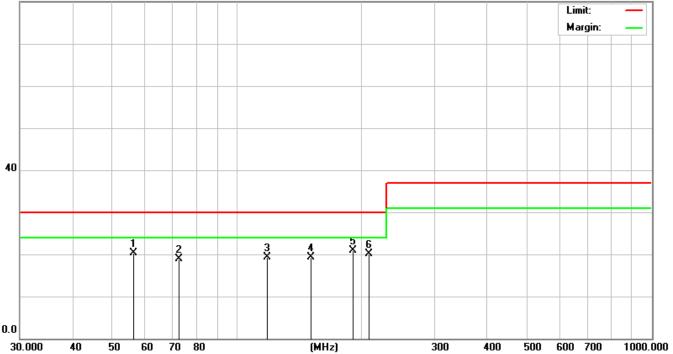

1. All Readings below 1GHz are Quasi-Peak.

2. Measurement = Reading + Factor (Could have ± 0.01 tolerance due to computer automatically round off calculation).

3. Over Limit (Margin Value)=Measurement level-Limit value.

- 4. Factor = antenna factor + cable loss amplifier gain.
- 5. " \bigstar " means that this data is the worst case measurement level.
- 6. The antenna height could have ± 1 cm tolerance and the turn table degree could have $\pm 1^{\circ}$ tolerance.
- 7. The measurement uncertainty is 4.10 dB.

80.0 dBuV/m

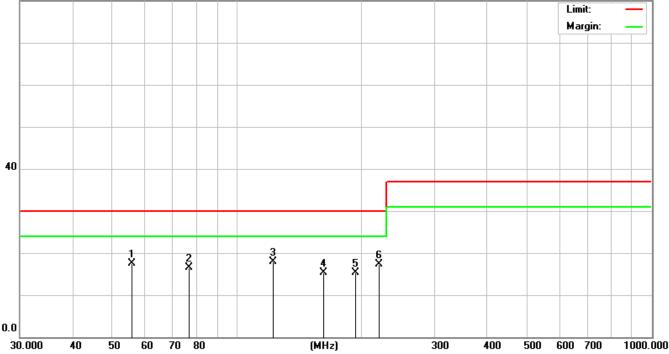

Date of Test	August 03, 2015	Temperature	25 deg/C
EUT	AC Adapter	Humidity	60 %RH
Working Cond.	Mode 33	Display Pattern	N/A
Antenna distance	10m at Vertical	Test Frequency Range	30-1000MHz
Test Power Supply	AC 120V/60Hz		

No	Frequency	Reading Level	Factor	Measurement	Limit	Over Limit	Detector
No.	MHz	dBµV	dB	dBµV/m	dBµV/m	dB	Detector
1	56.2000	39.60	-19.22	20.38	30.00	-9.62	QP
2	72.2000	38.00	-19.00	19.00	30.00	-11.00	QP
3	118.6000	32.59	-13.36	19.23	30.00	-10.77	QP
4	150.6000	33.36	-14.09	19.27	30.00	-10.73	QP
5	★ 190.6000	35.80	-14.88	20.92	30.00	-9.08	QP
6	208.0000	34.23	-14.07	20.16	30.00	-9.84	QP

Remarks:

- 1. All Readings below 1GHz are Quasi-Peak.
- 2. Measurement = Reading + Factor (Could have ± 0.01 tolerance due to computer automatically round off calculation).
- 3. Over Limit (Margin Value)=Measurement level-Limit value.
- 4. Factor = antenna factor + cable loss amplifier gain.
- 5. " \star " means that this data is the worst case measurement level.
- 6. The antenna height could have ± 1 cm tolerance and the turn table degree could have $\pm 1^{\circ}$ tolerance.
- 7. The measurement uncertainty is 4.10 dB.

80.0 dBuV/m


Date of Test	August 03, 2015	Temperature	25 deg/C
EUT	AC Adapter	Humidity	60 %RH
Working Cond.	Mode 47	Display Pattern	N/A
Antenna distance	10m at Horizontal	Test Frequency Range	30-1000MHz
Test Power Supply	AC 120V/60Hz		

No.	Frequency MHz	Reading Level dBµV	Factor dB	Measurement dBµV/m	Limit dBµV/m	Over Limit dB	Detector
1	55.8200	36.62	-19.18	17.44	30.00	-12.56	QP
2	76.3200	35.25	-18.74	16.51	30.00	-13.49	QP
3	★ 122.0200	31.25	-13.32	17.93	30.00	-12.07	QP
4	161.9580	29.80	-14.53	15.27	30.00	-14.73	QP
5	193.6300	30.02	-14.81	15.21	30.00	-14.79	QP
6	221.2230	30.44	-13.08	17.36	30.00	-12.64	QP

Remarks:

- 1. All Readings below 1GHz are Quasi-Peak.
- 2. Measurement = Reading + Factor (Could have ± 0.01 tolerance due to computer automatically round off calculation).
- 3. Over Limit (Margin Value)=Measurement level-Limit value.
- 4. Factor = antenna factor + cable loss amplifier gain.
- 5. " \star " means that this data is the worst case measurement level.
- 6. The antenna height could have ± 1 cm tolerance and the turn table degree could have $\pm 1^{\circ}$ tolerance.
- 7. The measurement uncertainty is 4.10 dB.

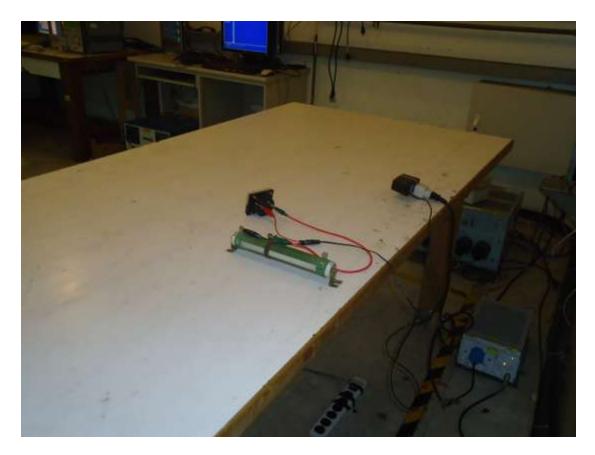
80.0 dBuV/m


Date of Test	August 03, 2015	Temperature	25 deg/C
EUT	AC Adapter	Humidity	60 %RH
Working Cond.	Mode 47	Display Pattern	N/A
Antenna distance	10m at Vertical	Test Frequency Range	30-1000MHz
Test Power Supply	AC 120V/60Hz		

No.	Frequency	Reading Level	Factor	Measurement	Limit	Over Limit	Detector
	MHz	dBµV	dB	dBµV/m	dBµV/m	dB	
1	★55.8500	40.23	-19.18	21.05	30.00	-8.95	QP
2	75.9500	38.66	-18.77	19.89	30.00	-10.11	QP
3	121.1100	33.00	-13.30	19.70	30.00	-10.30	QP
4	150.6390	34.26	-14.09	20.17	30.00	-9.83	QP
5	190.6250	35.91	-14.88	21.03	30.00	-8.97	QP
6	208.2200	33.02	-14.05	18.97	30.00	-11.03	QP

Remarks:

- 1. All Readings below 1GHz are Quasi-Peak.
- 2. Measurement = Reading + Factor (Could have ± 0.01 tolerance due to computer automatically round off calculation).
- 3. Over Limit (Margin Value)=Measurement level-Limit value.
- 4. Factor = antenna factor + cable loss amplifier gain.
- 5. " \star " means that this data is the worst case measurement level.
- 6. The antenna height could have ± 1 cm tolerance and the turn table degree could have $\pm 1^{\circ}$ tolerance.
- 7. The measurement uncertainty is 4.10 dB.


80.0 dBuV/m

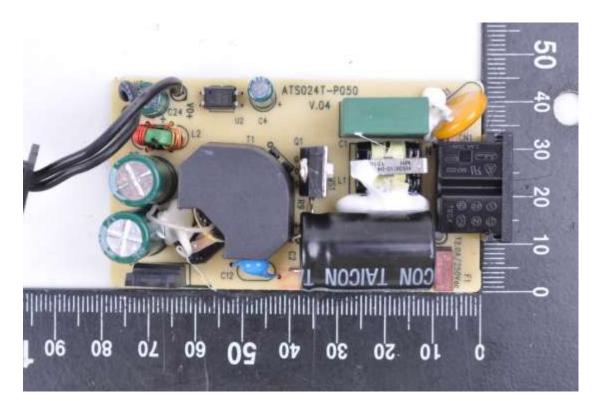
6. PHOTOGRAPHS FOR TEST

6.1 TEST PHOTOGRAPHS FOR CONDUCTION

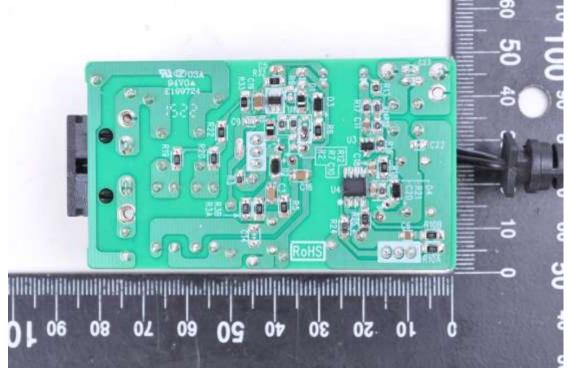
6.2 TEST PHOTOGRAPHS FOR RADIATED

(30 MHz to 1 GHz)

7. PHOTOGRAPHS FOR PRODUCT


Front View of AC Adapter. (Desk Top type)
 Back View of AC Adapter. (Desk Top type)

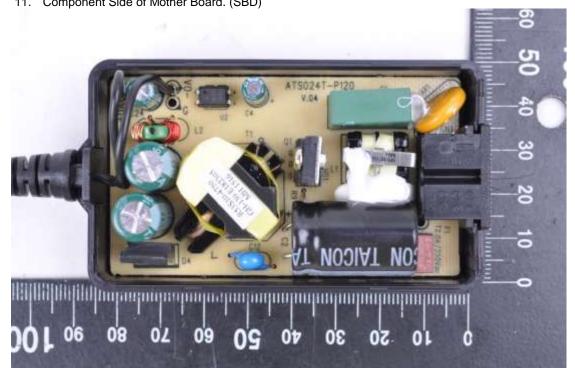

- Component Side of Mother Board. (SR) Component Side of Mother Board. (SR) 3.
- 4.

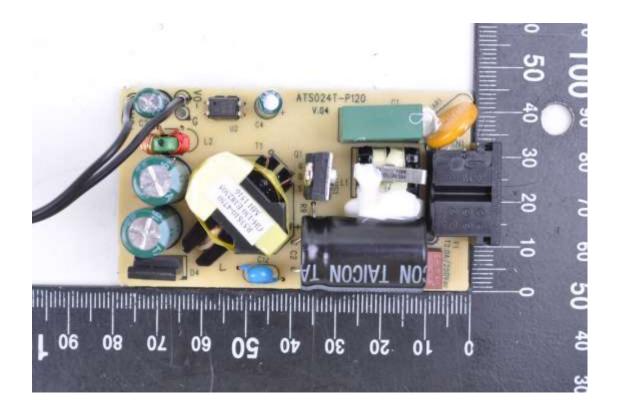


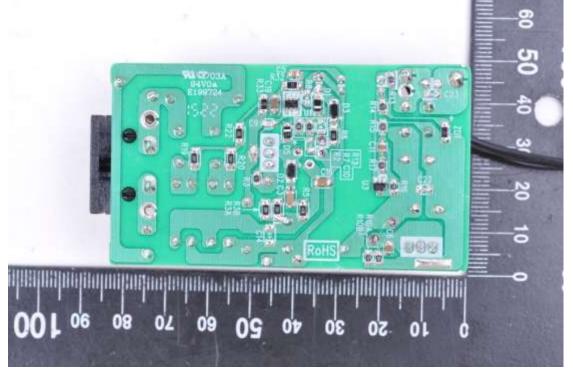




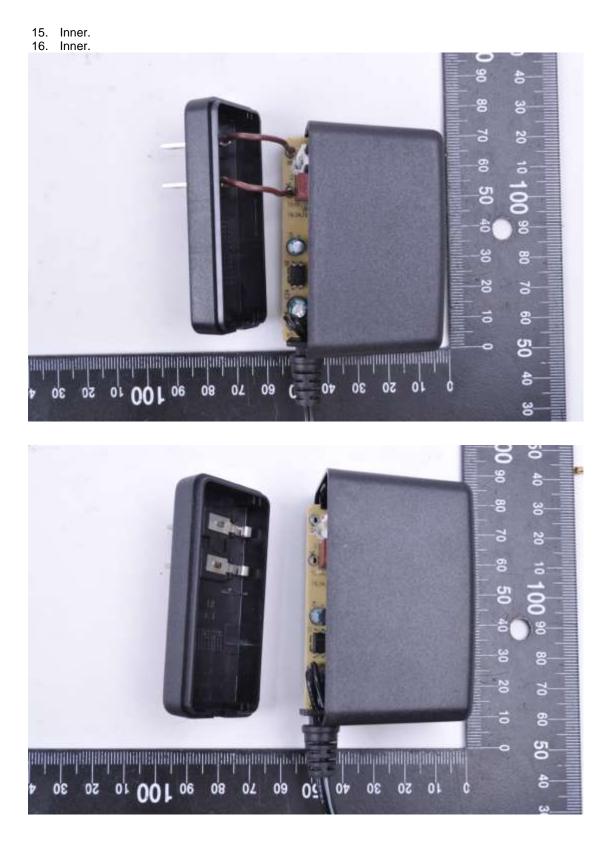
7. Component Side of Mother Board. (SR)

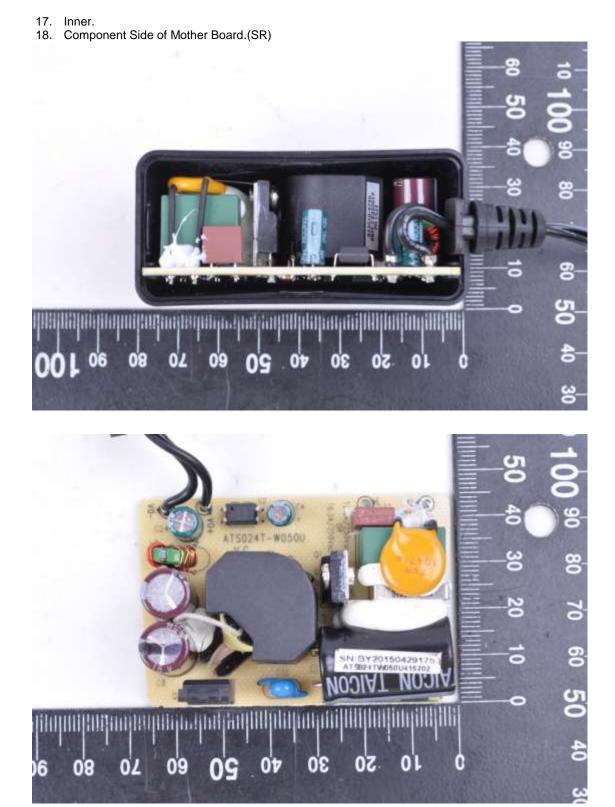



- Component Side of Mother Board. (SBD) Component Side of Mother Board. (SBD) 8.
- 9.

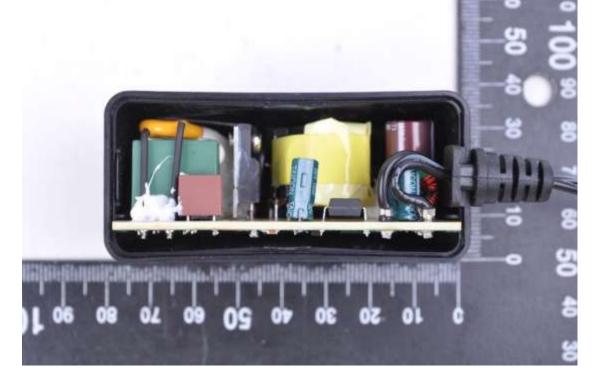


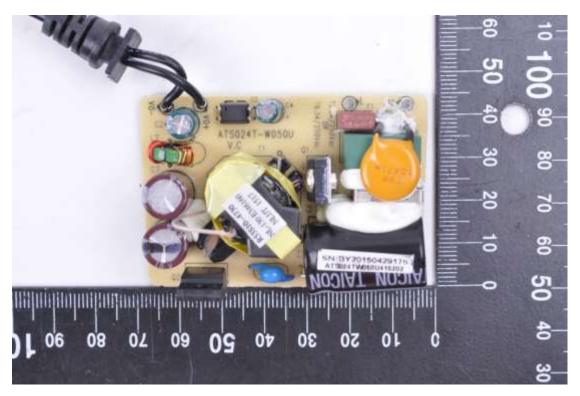
Component Side of Mother Board. (SBD)
 Component Side of Mother Board. (SBD)

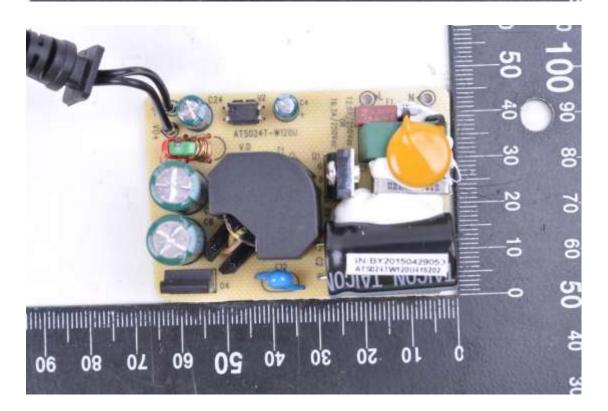

12. Solder Side of Mother Board. (SBD)

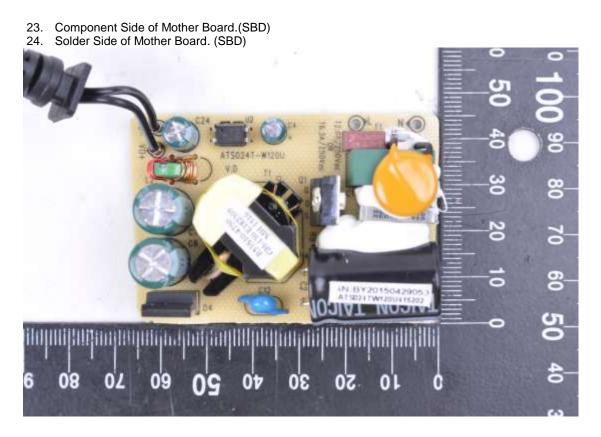


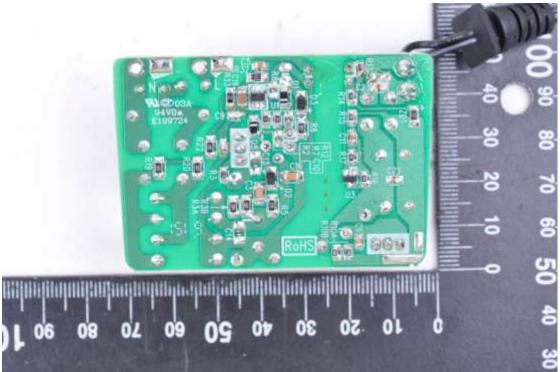
- Front View of AC Adapter. (Direct Plug In type)
 Back View of AC Adapter. (Direct Plug In type)



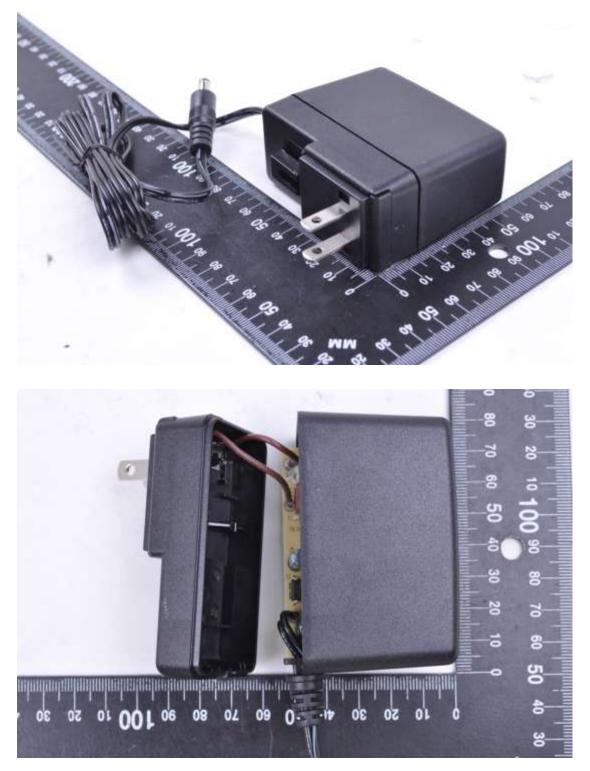



- 19. Inner.
- 20. Component Side of Mother Board.(SR)





- Solder Side of Mother Board. (SR)
 Component Side of Mother Board.(SBD)



- Front View of AC Adapter. (US plug)
 Back View of AC Adapter. (US plug)

8. EMI/EMS REDUCTION METHOD DURING COMPLIANCE TESTING

No modification was made during testing.

Appendix A Circuit (Block) Diagram

(Shall be added by Applicant)

Appendix B

User Manual

(Shall be added by Applicant)